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CHAPTER 1 

INTRODUCTION 

1.1 Outline of the Dissertation 

This dissertation summarizes the work of the author, Monique D. Ewan, in the 

Jeffries-EL research group from 2010-2015. The main objective of the research has been 

two-fold: to develop novel materials for organic semiconductors, and to fabricate organic 

semiconducting devices. 

Chapter 1 provides an outline of this dissertation as well as an overall introduction 

to the topics covered in this dissertation. Firstly, there will be an introduction to organic 

solar cells, followed by a discussion on the theory behind organic semiconductors and the 

requirements for polymers tailored for organic solar cells  

Chapter 2 is based on published works (Polymer Chemistry 2013, 1, 5329-5336) 

and (Chemical Communications 2012, 48, 8919-8921). All polymers were synthesized 

and characterized by Dr. Brandon Kobilka. The solar cells were fabricated and 

characterized by the author, Monique D. Ewan. SCLC mobility measurements and AFM 

images were also obtained by the author.  

Chapter 3 is based on a series of polymers synthesized and characterized by 

Monique D Ewan. The benzodifuran monomer was synthesized by Dr. Brandon M. 

Kobilka. Solar cells were fabricated and characterized by Monique D. Ewan.  

Chapter 4 is based on published work (Journal of Polymer Science A 2015, 53, 

1533-1540). The polymers were synthesized and characterized by Dr. Achala Bhuwalka. 

The solar cells were fabricated and characterized by the author, Monique D. Ewan. SCLC 
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mobility measurements were performed by Monique D. Ewan and Dr. Moneim 

Elshobaki. AFM measurements were taken by Dr. Moneim Elshobaki.  

Chapter 5 is based on published work in the (Journal of Polymer Science A 

10.1002/pola.27793, 2015).  The solar cells were fabricated and characterized by the 

author, Monique D. Ewan. The polymers were synthesized and characterized by Dr. 

Achala Bhuwalka. SCLC mobility measurements were performed by Monique D. Ewan 

and Dr. Moneim Elshobaki. AFM measurements were taken by Dr. Moneim Elshobaki. 

Chapter 6 concludes the dissertation with a summary of the described research, as 

well as, any recommendations on future directions that should be investigated.  

 

1.2 Organic solar cells (OSCs) 

 

In the United States, and the world at large, fossil fuels are the prominent energy source. 

Although readily available now, the reserves of energy are finite and dwindling. Furthermore, 

burning fossil fuels accelerates the release of CO2 into the atmosphere, which has been shown to 

be a leading cause in global climate change1-3. Consequently, there is an eminent need for the 

development of energy sources that are both renewable and environmentally responsible.  Solar 

energy is one of the cleanest energy sources available today. The global energy requirement by 

2050 is projected to be ~ 30 TW. The sun provides approximately 120,000 TW of energy 

annually i.e. more sunlight energy strikes the earth in 1 hour than all the energy consumed 

worldwide in an entire year4. In principle covering 25, 921 km2 (about the size of the state of 

New Hampshire) of land in Nevada with solar cells that have at least 15% efficient could power 

the entire United States (Figure 1-1)5.  
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Figure 1-1. Area (in red) covered with 15% efficient solar cells could provide a a years woth of 

electricity for the US 

 

The most efficient solar cells, to date, are based on silicon6. Unfortunately, their 

fabrication requires elaborate processing conditions resulting in high processing costs7. 

Additionally, improvements upon the traditional silicon solar cell require the incorporation of 

rare, expensive elements such as indium and toxic elements such as germanium8. As a result 

these types of devices are not a practical, long-term option. Conversely, organic solar cells 

(OSCs) represent a low cost alternative. They have lower fabrication cost as a 10% OSC is 

expected to cost $50/m2 as opposed to $350/m2 for inorganic solar cells9. This is because OSCs 

can be solution processed with  high fabrication speeds. They can also perform better at lower 

light levels and can be made on flexible substrates10 Currently, there are several reports on OSCs 
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with power conversion efficiencies between 7-9%11-14. There have even been a few examples of 

higher efficiencies15, 16. There is still, however, room for improvement. This can be achieved 

through device engineering as well as the development of new materials11, 17, 18. 

1.2.1 Operating Principles 

1.2.1a Exciton Generation, Diffusion and Dissociation 

When a solar cell is exposed to light from the visible spectrum, a photon is absorbed. An 

electron from an electron donating, or p-type, material gets excited from its highest occupied 

molecular orbital (HOMO) to its lowest unoccupied molecular orbital (LUMO) (Figure 1-2a). At 

this point, it forms a bound electron – hole pair called an exciton19 with a binding energy of 0.1 – 

1.4 eV 20. The newly formed exciton migrates to the heterojunction or interface of the p-type and 

n-type materials (Figure 1-2b). Here, the n-type material is the electron acceptor. Once at the 

heterojunction, the exciton separates as the electron migrates to the LUMO of the acceptor 

material. The hole remains on the HOMO of the donor (Figure 1-2c). This process is called 

exciton dissociation and is only energetically favorable if the difference between the HOMO of 

the donor and LUMO of the acceptor is lower than the exciton binding energy21.   

This charge transfer process occurs at a relatively fast timescale of ~45 fs 22 which is 

much faster than the timescale of its competing process of exciton recombination (1 ns) 23. 

Therefore, exciton dissociation is more likely to occur at a more efficient rate. After exciton 

dissociation, there is a critical distance along the heterojunction called the exciton diffusion 

length (10-20 nm) 24-29. If the exciton has to go further than this distance, it will recombine. This 

results in a lower exciton dissociation efficiency21. Consequently, the active layers have to be 

kept sufficiently thin to ensure good phase separation between the donor and acceptor materials. 

 

4



www.manaraa.com

 1.2.1b Carrier Transport and Collection 

After dissociation, the electron-hole charge pair, called a geminate pair, is still 

coulombically bound and needs to be so that the charges can be collected at their respective 

electrodes.  

 

Figure 1-2. Charge separation and transfer within an organic solar cell. Adapted from Ref. 21. 

 
  The driving forces for charge collection include drift and diffusion currents. The drift 

current relates to the carrier movement along the potential gradient in the solar cell. This 

potential gradient is determined by the choice of electrodes within the solar cell. A high work 

function anode (-4.7 eV), such as indium tin oxide (ITO), and a low work function metal cathode 

(-4.3 eV), such as aluminum, are usually used. The difference between the work function of the 

electrodes creates a built-in electric field within the solar cell. The application of an external bias 

results in the modification of the internal electric field and a change in the drift current. The 

carriers end up drifting along the internal electric field towards their respective electrodes 

(Figure 1-2d). 
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The diffusion current involves the diffusion of carriers along their carrier concentration 

current in the solar cell. When the geminate pairs are generated at the heterojunction, there is 

large concentration of holes and electrons. The carriers will diffuse from where they are strongly 

concentrated and hence diffuse away from the heterojunction. The diffusion current is dominant 

when the internal electric field is modified to nearly zero by the applied bias. The drift current is 

dominant when the internal electric field is large. 

Efficient charge extraction occurs within the solar cell when the work function of the 

anode matchers the work function of the p-type material and the work function of the cathode 

matches the LUMO of the n-type material; i.e., when there is ohmic contact. Various interlayers 

can be used to electrode work functions and the p-type material HOMO and the LUMO of the n-

type material. Interlayers that are commonly used include hole transport layers and electron 

transport layers.  

 

1.2.2 Anode Interlayers 

Anode interlayers or hole transporting layers (HTLs) are used to improve contact 

property between ITO and the organic layer.  They also increase the work function of ITO for 

more efficient hole transporting and collecting30, 31. Traditionally, poly(3,4-

ethylenedioxythiophene) – polystyrene (PEDOT:PSS) has been used as a HTL, it planarizes the 

ITO surfaces spikes32-34, ensures ohmic contact35, increases the open circuit voltage34 and 

enhances hole collection36. Unfortunately, PEDOT:PSS is acidic in nature and it corrodes the 

ITO37-40. This causes a decrease in the chemical stability of the ITO: PEDOT:PSS interface41. 

One approach for combating this problem is spincoating a thin layer of ethylene glycol over the 
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PEDOT: PSS layer42, 43. Alternative other HTLs that have been used including semiconducting 

oxides such as molybdenum oxide (MoO3)44, 45, carbon nanotubes46, 47 and organic materials such 

as the blend: poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenyl-amine] (TFB): 4,4’-

bis[(p-trichlorosilylpropylphenyl)-phenylamino]biphenyl (TPDSi2)48. 

1.2.3 Cathode Interlayers 

Cathode interlayers or electron transporting layers (ETLs) are used to improve the 

stability of devices using aluminum as the cathode. When aluminum is deposited onto the device, 

it is thermally evaporated. During thermal evaporation, the hot Al atoms can diffuse into the 

organic layer. This results in chemical reactions at the metal/organic interface. Additionally, Al-

C bond formation at the metal/organic interface will undoubtedly interfere with and break the π-

conjugated system of the organic layer. Cathode interlayers materials include: metals, such as 

calcium, inorganic compounds such as lithium fluoride (LiF)49-51 and water or alcohol soluble 

polymers52 such as poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-

dioctylfluorene)] (PFN)53.   

1.2.4 P-type Materials 

P-type materials serve as the electron donors in the organic solar cell. They are organic 

semiconductors that come in the form of small molecules or polymers54. Examples include the 

polymers polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7)55,  poly[N-9”-hepta-

decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole) (PCDTBT)56 and the 

small molecule 5,5-bis((4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-

c]pyridine)-3,3-di-2-ethylhexylsilylene-2,2-bithiophene (DTS(PTTh2)2
57 (Figure 1-3).  Active 

layer donor materials will be covered in more detail further in this chapter.  
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Figure 1-3. Molecular structures of common p-type active layer materials 

 

 

1.2.5 N-type Materials 

 

In addition to the selection of interlayers the choice of n-type material is also important. 

In early works, C60 fullerene was used as it was observed that there was photoinduced electron 

transfer in blends of conjugated polymers and the fullerene derivative58. C60 derivatives have a 

low-lying HOMO relative to p-type materials, which makes them great electron acceptors59. 

They also have high electron mobilities in OFETs, which is desired for good charge transport for 

an n-type material60, 61. Fullerenes are able to accept six electrons; due to their triply degenerate 

LUMOs. Electron transfer for fullerenes takes place at 45 fs 62, which is significantly faster than 
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back electron transfer or the radiative decay that occurs through photoluminescence. Thus they 

are able to provide a kinetic driving force for efficient charge separation23.  

 

 

 

Figure 1-4. Molecular structures of [6,6’]-phenyl-C61-butyric acid methyl ester (PCBM) and 
[6,6’]-phenyl-C71-butyric acid methyl ester (PC71BM) 

 
 

P-type materials often suffer from photooxidation of their excited states. Fullerenes can 

address this problem by rapidly quenching the excited state63, 64. Unfortunately, C60 has poor 

solubility in organic solvents. To address this issue, the functionalized derivative PC61BM was 

created61 (Figure 1-4). In recent years the use of another fullerene derivative, PC71BM has been 

more prevalent as this derivative is able to absorb more light in the UV-Vis spectrum65-67 (Figure 

1-5). This increase in absorbed light results in a higher JSC value.  
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Figure 1-5. UV-Vis absorption spectra of PC60BM and PC70BM. Adapted from Reference 21. 

 

1.2.6 Bilayer vs Bulk Heterojunction Architecture 

The bilayer structure, created by Tang et al, is composed of a junction that uses two 

organic materials with properly aligned energy levels68 (Figure 1-6). Here, the acceptor layer is 

deposited onto a layer of the donor material. In the bilayer architecture, the p-type and n-type 

materials contact the anode and cathode selectively. The layers of donor and acceptor need to be 

sufficiently thick for optimal light absorption. Due to the short exciton diffusion lengths, there is 

often a lot of exciton recombination associated with this structure as the active layers were to 

thick69 and separated excitons would have to go past this distance.  

In order to combat this problem, the bulk heterojunction structure was developed by 

Heeger et al70. The bulk heterojunction architecture, while similar in structure to the bilayer 

structure, has one key difference: the p and n-type materials are intermixed and deposited as one 

layer resulting in a bicontinuous and interpenetrating network (Figure 1-6). This ensures that 
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phase separation is more likely to be within the exciton diffusion length and this results in more 

efficient exciton dissociation71. Bulk heterojunctions are generally achieved by the co-deposition 

of donor and acceptor or by spincasting solutions of donor/acceptor blends17.  

 

Figure 1-6. Showing difference in structure between the bilayer architecture and the bulk 
heterojunction architecture. 

 
1.2.7 Solar Cell Characterization  

Solar cells are characterized by their power conversion efficiencies, which are calculated by the 

following equation72: 

 

 

 

Figure 1-7. Current density vs voltage plot characteristic of a solar cell device. Reprinted with 
permission from Ref. (72). Copyright (2013), Wiley-VCH. 
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The open circuit voltage (VOC) is the voltage at zero current density (Figure 1-7) and is 

dependent on difference in the work function of the metal contacts. The VOC is usually dependent 

on the HOMO-LUMO difference between the donor and acceptor if there is ohmic contact being 

formed22. 

 

Figure 1-8. Diagram showing the origin of the open-circuit voltage in the BHJ solar cell. 
Reprinted with permission from Ref. (72). Copyright (2013), Wiley-VCH. 

The short circuit current density (JSC) is the current density when the voltage is zero 

(Figure 1-7). It represents the number of charge carriers that are generated and collected by the 

electrodes in the solar cell. The JSC becomes markedly better with conditions such as a small 

band gap of donor materials, high absorption coefficients, smaller phase separations between 

donor and acceptor blends and high charge carrier mobilities.  

The fill factor (FF) (Figure 1-7) describes the dependence of the current output on the 

internal field of the device and is determined by the charge carriers reaching the electrodes22. FF 

is defined by the equation: JmppVmpp/JSCVOC, where Jmpp and Vmpp are the current density and 

voltage at the maximum power input73 (Figure 1-7). The FF is characterized by series resistance 

(RS) and shunt resistance (RSH), whereby an ideal device seeks to have a smaller RS and larger 

RSH. Both Rs and RSH are greatly influenced by the morphology of the polymer/fullerene blend.  

The J-V characteristics and the power conversion efficiency are not enough to quantify 

the performance of the solar cell. To further quantify the performance, the optical factors need to 
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be investigated in detail. This is done by measuring the incident photon to electron conversion 

efficiency (ICPE). The ICPE measures the amount of absorbed photons that are converted to 

charge carriers and end up getting collected at electrodes in the solar cell. It is equivalent to the 

external quantum efficiency (EQE).  Trends in the EQE should be proportional to trends in the 

JSC.  

 

1.2.8 Solar Cell Optimization 

In order to properly optimize solar cells of a given polymer, certain parameters have to be 

varied. These include the concentration of the active layer blend, the speed use to spin coat for 

active layer blend, the choice of the fullerene derivative as well as the hole transporting layer 

used. The concentration of the active layer blend affects the thickness of the resulting film, with 

More concentrated solutions result in thicker films. Reducing the spin coating speeds during the 

deposition of the active layer blends also result in thicker films.  This is beneficial as thicker 

films increase light absorption, however thicker films have lower mobilities and impeded charge 

transport74-76. Generally, for polymer solar cells, a thickness of ~ 100 nm is desired75. This gives 

the best balance of optimal JSC values as well as optimal mobilities and charge transport in the 

film. The hole transporting layer can be selected based on the energy levels of the anode used 

and the donor material. Ideal energy level alignments result in ohmic contact.  

Additionally, solvent additives can be used in the active layer blend solutions. Solvent 

additives elongate the drying process and promote crystallinity in the active layer77-79. They 

improve on the polymer: PCBM interpenetrating network through a better mixing of the blend 

components (Figures 1-9, 1-10). Commonly used additives include: 1,8-diiodooctane (DIO)80, 81, 

1,8-octanedithiol (ODT)82, 83 and 1-chloronaphthalene (CN)77, 84, 85. 

13
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Figure 1-9. Schematic showing the role of the solvent additive in the self-assembly of the bulk 
heterojunction blend materials. Reprinted with permission from Ref. (80). Copyright (2008), 

American Chemical Society. 

 

Figure 1-10.  Schematic showing the effect of the solvent additive, DIO. Reprinted with 
permission from Ref. (14). Copyright (2011), American Chemical Society 

 

1.3 Organic semiconductors   

  Organic semiconductors are unsaturated molecules consisting of alternating double-single 

(conjugated) bonds. A basic example of an organic semiconducting polymer is trans-

polyacetylene. Trans-polyacetylene has a quasi- one-dimensional structure that is held together 

by trigonal planar σ-orbitals in the polymer backbone. Only three of the carbon electrons 

participate in the σ backbone. The remaining electron is perpendicular to the trigonal plane in the 

pz orbital. All these remaining pz ortbital electrons from adjacent carbons overlap to form the π 

system86. This π system is a delocalized electron cloud with periodic alternating density. The 

polymer has two equivalent structures with the same ground state energies. This is referred to as 

14
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the degenerate ground state.  The system of π electrons is delocalized along the carbon chain. 

This, along with weaker inter chain interactions gives polyacetylene its quasi-1D structure.  

The alternating double and single bonds found within the polymer, if they were the same 

length, would consist of π electron bands that are half-filled with electrons by Pauli’s principle. 

This implies that the polymer would be a metal. Peierls, however, predicted that this was not 

true87. The structure has instability due to lattice vibrations. This results in a dimerization of the 

backbone into longer single bonds and shorter double bonds87. X-ray diffraction and nuclear 

magnetic resonance can be used to measure the difference in the bond lengths at approximately 

1.45 Å and 1.35 Å 88. This reaction is spontaneous and results in a reduction of the crystalline 

symmetry and subsequent minimization of the ground state energy of the occupied band. 

Throughout this time, the potential energy of the dimerized polymer chain is increased. This 

leads to an equilibrium state, where the total energy of the polymer chain is lowered. There is a 

change in the electron density during an allowed π→ π* transition. This change is an asymmetric 

change in the dipole moment and a reduction in the bond strength86.  

Peierls’ distortion predictions elucidated the development of two molecular bands; the π-

band originating from the HOMO and the π*-band originating form the LUMO89, 90. These bands 

have a non-zero energy gap between them, which is referred to as the band gap. The HOMO and 

LUMO bands are analogous to the valence and conduction bands in inorganic semiconductors; 

where the valence band is filled with electrons and the conduction band is usually free of 

electrons. The HOMO and LUMO represent the energy bands that correspond to the various 

hybridization between the bonding and antibonding π-electrons86, 91 (Figure 1-11). As the level 

of conjugation in the polymer increases, the band gap decreases until the effective conjugation 

15
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length is reached. At this point, the electronic properties of the materials do not change, even if 

more repeat, conjugated units are added. 

 

   

1.3.1 Rational Design of Conjugated Polymers  

 

The design of a conjugated polymer can be divided into three major components: the 

conjugated backbone, the side chains and the substituents (Figure 1-12)92.  

Figure 1-11. The Evolution of conjugated polymer band structures from 
molecular orbitals 
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Figure 1-12. The main components of the conjugated semiconducting polymer. Reprinted with 
permission from Ref. (92). Copyright (2011), American Chemical Society. 

 
The most vital component is the conjugated backbone as it influences the physical properties of 

the polymer, which are related to solar cell performance. It determines the polymer bandgap, 

energy levels and intermolecular interactions93. 

Two important solar cell efficiency characteristics, the open circuit voltage (VOC) and short-

circuit current density (JSC), are closely related to the polymer’s electronic properties. Most of 

the energy form the solar spectrum (~70%) is found between 380 nm and 900 nm94 (Figure 1-

13). As a result, one of the important requirements for conjugated polymers is the ability to 

absorb light within this region. This ultimately leads to a polymer bandgap of 1.4-1.5 eV,95, 96 

which would enable to polymer to have a broad and strong absorption range. This is the first 

prerequisite for achieving high JSC values93.  
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Figure 1-13. Standard AM 1.5 Solar Spectrum 

 

The VOC is directly related to the energy difference between the HOMO of the donor 

conjugated polymer and the LUMO of the accepter (typically PCBM a fullerene derivative) 

molecule in the solar cell. There is also a minimum difference of 0.3 eV for the LUMOs of the 

polymer and acceptor; the exciton driving force, required to dissociate the exciton from a 

conjugated polymer97. PCBM has a LUMO of -4.3 eV. Based on the afore-mentioned 

information, an ideal conjugated polymer would have a low-lying HOMO of around -5.4 eV to 

ensure a high VOC.  

 Early organic solar cells employed the use of the homopolymers, such as poly-3-

hexylthiophene (P3HT)98, 99, as the material for the conjugated polymer backbone (Figure 1-14).  

The repeat unit of a homopolymer consists of a single aromatic unit or fused aromatic units. The 

physical properties of these polymers were largely determined by the properties of the 

constituting aromatic unit(s). As a result, most homopolymers, like P3HT, have large bandgaps 
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over 1.9 eV92, 100. This led to future research that concentrated on designing conjugated polymers 

with narrow bandgaps. 

 

Figure 1-14. Molecular structure of P3HT 

 1.3.1a Design of polymer backbone 

The most established method to narrow the bandgap of a conjugated polymer has been to 

increase the quinoid structure in the polymer backbone93. Conjugated polymers, in their ground 

states, have two degenerate resonance forms: an aromatic form and a quinoid form101. In the 

aromatic form, the aromaticity of the thiophene units within the polymer is maintained by the 

confinement of π-electrons within the molecule (Figure 1-14)102. In the quinoid form the π-

electrons are distributed throughout the polymer backbone by simultaneously changing double 

bonds to single bonds and single bonds to double bonds. The aromatic form has lower ground 

state energy relative to the quinoid form103.For structures with aromatic rings, the band gap does 

not decrease as a function of decreasing bond length but, rather, as a function of the increasing 

quinoid character104. Polymers with a greater tendency to form a quinoid structure have lower 

bandgap energies due to their higher ground state energies105 . The quinoid form also promotes 

planarity within the polymer because π-electrons are delocalized more effectively along the 

polymer backbone103. One method to increase the quinoid character within a polymer involves 

the incorporation of thiophene units, which are fused to other aromatic units such as benzene. 

Benzene has a higher resonance energy and therefore, in these fused systems, thiophene is likely 

to adopt the quinoid form so that the benzene ring can maintain its aromatic form (Figure 1-15).  

S

n
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Figure 1-15. Aromatic and quinoid forms of (a) poly(benzo[c]thiophene), (b) polythirnro[3,4-
b]pyrazine and (c)poly9thieno[3,4-b]-thiophene). Reprinted with permission from Ref. (102). 

Copyright (2010), American Chemical Society. 

 
Another way to promote quinoid character in a polymer is to incorporate the use of donor-

acceptor polymers, which have been widely implemented through the intramolecular charge 

transfer (ICT) approach106-111. Here, through orbital mixing, the HOMO and LUMO of the 

conjugated polymer are controlled by its subsequent donor and acceptor monomer units (Figure 

1-16). The donor monomer units are electron – rich units and the acceptor units are electron-

deficient units. The driving force of the push and pull of electron density between the electron 

donating units and the electron accepting units favors the polymer’s quinoid resonance form112. 

Consequently, the band gap if the copolymers decrease as the π-electrons can be delocalized 

more effectively.  

20



www.manaraa.com

 

Figure 1-16. Molecular orbital theory explanation for band gap reduction in a D-A copolymer. 
Reprinted with permission from Ref (112). Copyright (2015), American Chemical Society 

 
 1.3.1a-1 Donors 
 

Donors are chosen based on electron richness. Constituents with fused rings are 

commonly used as the arrangement of aromatic rings can lead to an increase on the charge 

mobility as well as tuning of the energy levels. Donor moieties are often designed with fused 

three ring and ladder type structures, 113-116 which ensures that the structure of the donor is planar 

with and extended π systems. This is beneficial as planar structures add rigidity to the polymer 

backbone and facilitate better hole mobilities and π- π stacking. In fused systems, replacing 

center carbon atoms with Si results in better stacking along the polymer backbone (Figure 1-17). 

While the HOMO levels remain the same, it is the largeness of the Si, relative to C, and the 

longer C-Si bond that results in this improvement in the molecular packing and therefore, charge 

transport117, 118. Figure 1-18 summarizes electron donors based on their relative donating 

strength92. 
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Figure 1-17 

 

 

Figure 1-18. Empirical char shoring relative the relative electron-donating ability of various 
donor units. Reprinted with permission from Ref. (92). Copyright (2012), American Chemical 

Society. 
 
 1.3.1a-2 Electron acceptors for D-A polymers 
 

It is desirable that electron acceptors have excellent electron mobilities, broad absorption 

spectra, and properly matched energy levels with its copolymerized donor. Electron acceptors 

typically are made from moieties with high electron affinities and include electron-withdrawing 

substituents, such as amides, imides and thiadiazoles92. Planar structures are also desirable as 

they promote electron delocalization and enhance intramolecular interactions119, 120. While there 

are a plethora of electron donors available, there are far fewer electron acceptors121. This is a 
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testament of the challenge to synthesize an acceptor that is simultaneously strongly electron 

deficient as well as stable. Figure 1-19 summarizes some of the most commonly used strong 

electron acceptors92. 

 
 

 

Figure 1-19. Molecular structures of selected strong electron acceptors. Reprinted with 
permission from Ref. (92). Copyright (2012), American Chemical Society 

 
1.3.1b Weak Donor – Strong Acceptor Polymers 

 
While the use of donor – acceptor polymers is a good way to ensure polymers with narrow 

bandgaps, it often results in higher HOMO levels and ultimately lower VOC values. To 

simultaneously decrease the bandgap and lower the HOMO level, weak donor – strong acceptor 

systems have been studied122. The weak donor ensures that the polymer has a lower HOMO 

level. The strong acceptor reduces the bandgap through ICT (Figure 1-20).  
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Figure 1-20. Band diagram showing the energy levels of an ideal conjugated polymer relative to 
PCBM. Reprinted with permission from Ref. (122) . Copyright (2010) American Chemical 

Society. 

 

 

1.3.2 Substituents 

In order to better fine-tune the energy levels and bandgaps, substituents can be used on the 

main polymer backbone. They can also affect the molecular interactions with in the polymer, as 

well as the film morphology. Electron – donating substituents such as methoxy (-OCH3) raises 

the HOMO level, electron – withdrawing substituents such as cyano (-CN) have more of an 

impact on the LUMO level123-125. A commonly used substituent is the fluorine atom, which is the 

smallest electron – withdrawing group with a van der Waals radius of 1.35 Å. Fluorinated 

molecules exhibit good oxidative and thermal stabilities126. They also have a great influence on 

inter- and intramolecular interactions through C-F---H, and F---S interactions127, 128. Fluorine 

substitution results in approximately the same bandgap values, but a reduction in both the 

HOMO and LUMO levels129. Its presence on the backbone can increase the hole mobility110, 130. 

In the solar cell it allows the polymer to be more miscible with PCBM, which would allow for 

improved exciton dissociation110, 131, 132.   
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1.3.3 Solubilizing side chains 

Once the polymer energy levels have been engineered, solubilizing side chains are 

implemented to allow solution processability93. If conjugated polymers were synthesized without 

solubilizing chains, then their extended π-π systems would lead to insoluble aggregates that 

would not be solution processable. The addition of solubilizing chains assists in the attainment of 

higher molecular weight in the polymers. Higher molecular weights translate to better film 

quality in the active layer of the solar cell, which relates directly to better charge transport, and 

therefore better solar cell efficiencies. Higher molecular weight polymers are also more 

thermally stable than low molecular weight oligomers. 

The addition of bulky alkyl side chains, where there once was a tiny hydrogen atom, results 

in considerable steric hindrance between the aromatic units in the polymer133. This leads to an 

increase in the bandgap.  In order to combat bandgap enlargements, a good comprise of alkyl 

chain size and shape needs to be found. Longer alkyl chains result in larger dihedral angles for 

bonds between aromatic units133 (Figure 1-21 and Table 1). Small angles are indicative of more 

complete conjugation. Alternatively, large dihedral angles suggest a disruption in the conjugation 

of the aromatic units in the polymer.  It is this disruption that results in bandgap enlargement and 

a subsequent blue-shifting of the polymer absorption133-135. 

 

Figure 1-21. Molecular structures of four polymers based on the PBDT-DTBT backbone, 
showing different dihedral angles. Reprinted with permission from Ref. (133). Copyright (2010), 

American Chemical Society. 

25



www.manaraa.com

 
 

Table 1-1. Calculated dihedral angles of the polymers from Figure 1-20. Reprinted with 
permission from Ref. (133). Copyright (2010), American Chemical Society. 

 
polymer dihedral angle 1 (deg) dihedral angle 2 (deg) dihedral angle 3 (deg) 

PBDT−DTBT 4.1 10.9 14.1 
PBDT−4DTBT 5.2 14.3 30.2 
PBDT−3DTBT 50.7 36.2 17.7 

PBDT−DTsolBT 58.0 55.2 19.9 

 

 Unbranched or straight alkyl chains promote better intermolecular interactions within the 

polymer relative to branched chains.  Additionally, polymers with unbranched chains exhibit 

enhanced molecular packing,130  which results in a redshift in the absorption spectrum of the 

polymers. As a result, there is usually a marked improvement in the JSC value relative to that of 

the same polymers with branched chains. Although short, straight chain alkyl side chains are the 

best choice molecular packing, they are not the most effective means to achieve optimal solution 

processability136, 137. Branched, alkyl chains promote better intermixing between the polymer and 

the PCBM in the active layer of the solar cell. This often results in higher VOC values. The 

challenge, in the design of conjugated polymers, has been to strike a delicate balance between 

VOC and JSC and it has been shown that a good compromise has been to use short, branched alkyl 

chains (Figure 1-22). Additionally, positioning the side chains so that there is as little steric 

hindrance as possible within the molecule helps with better intermolecular interactions and 

packing.  
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Figure 1-22. Solar cell performances of polymers made with various combinations of 
solubilizing chains. Reprinted with permission. 

                 

1.3.4  Heteroatom substitution and effects 

The use of heteroatoms is prevalent in all low bandgap polymers used in OPV 

applications. These heteroatoms, when used in polymers, can affect the electron density and 

conjugation lengths and resulting molecules differ from the originals. This allows for the fine-

tuning of the polymer properties. When selenophene replaces thiophene, the selenium-based 

analogues have lower bandgaps and increased hole mobilities138-140. This is due to stronger 

interchain interactions from the more polarizable selenium atoms, which result in a stabilization 

of the HOMO141. This often results in an improvement in the PCE. Another example includes 

replacing the central carbons in PCDTBT with silicon (Figure 1-23). The silicon-containing 

polymer had better interchain ordering and the JSC was greatly improved relative to the carbon 

analogue. The length of the C-Si bond (1.89 Å) is significantly larger than the C-C bond (1.53 Å) 
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and this reduced the steric hindrance from bulky side chains and structures change from 

amorphous to crystalline with the substitution of silicon118, 142. 

 

Figure 1-23. Examples of heteroatom substitution of silicon for carbon in PCDTBT 

 
In conclusion, the design of the organic solar cell and the organic semiconducting polymer are 

both important. It is through the marriage of the optimization of the solar cells and fine-tuning of 

the organic semiconducting electronics that we able to obtain optimal organic solar cell 

performances. 

 

 

  

X

SS

N
SN

R R

n
P1: X = C, R = n-dodecyl
P2: X = Si, R = n-dodecyl
P3 :X=Si, R=2-ethylhexyl
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2.A.1 Abstract 

3,7-Diiodo-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans are efficiently prepared by an 

iodine-promoted double cyclization. This new heterocyclic core is readily modified by the attachment 

of alkyl chains for improved solubility. The use of these compounds for the synthesis of new 

conjugated polymers is also reported. 

2.A.2 Introduction 

  Organic semiconductors are finding widespread use as replacements for their inorganic 

counterparts in a range of applications, including field effect transistors (OFET)s, light-emitting diodes 

(OLED)s, and photovoltaic cells (OPVC)s.1-3 These materials offer advantages in the form of facile 

device fabrication via solution-based techniques and energy levels that can be tuned by chemical 

synthesis. Tuning can be accomplished through the synthesis of materials with alternating electron-

donating and electron-accepting moieties.4, 5 Among electron-donating building blocks, benzo[1,2-

b:4,5-b′]dithiophene (BDT) is particularly promising, due to its planar conjugated structure that 

facilitates π−π stacking, leading to higher hole mobility.6-9 Bulk heterojunction photovoltaic cells 

(BHJ-PVC)s using BDT copolymers as donors have achieved power-conversion efficiencies (PCE)s 

up to 7.4%.8 

  Recently, furan-containing molecules have been explored for the design of organic 

semiconductors.10-13 Furan is an attractive alternative to thiophene, since it is isoelectronic, while 

possessing a Dewar resonance energy of 18.0 kJ mol-1, which is less aromatic than that of thiophene 

(27.2 kJ mol-1).14 Thus, replacing thiophene with furan is expected to favor the formation of quinoid 

structures, leading to a reduction in the band gap of the resulting materials. Although benzo[1,2-b:4,5-

b’]difurans (BDF)s are known in the literature, the lack of methods for the synthesis of substituted 

derivatives has prevented their widespread use.15-19 Encouraged by some of our earlier work on 

iodocyclization, we explored this approach for synthesizing BDFs.20 Herein, we report the synthesis of 
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functional BDFs and their polymerization with isoindigo, an electron-deficient moiety that has been 

used in several polymers with high PCE, when used as donor materials in BHJ-PVCs.21, 22 

 

2.A.3 Results and Discussion 

  The synthetic steps to the desired polymers are shown in Scheme 2-A.1. The hydrogenation of 

the alkynyl BDFs 3a and 3b afforded the alkylated derivatives 4a and 4b in yields of ~95% each. 

Subsequent stannylation afforded 5a and 5b in yields of ~94% each. The Stille cross-coupling 

polymerization of 5a or 5b with 6,6’-dibromo-N,N’-(2-octyldodecanyl)-isoindigo 623 

 

 

Scheme 2-A.1 Modification and polymerization of the 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-

b']difurans. 

 

afforded the polymers PTinBDFID and PToutBDFID in excellent yields after purification by Soxhlet 

extraction with methanol, followed by acetone, to remove residual catalyst and low molecular weight 

materials. Of the catalysts evaluated, Pd2(dba)3 gave the best results (Table 2-A.1). The polymers are 

soluble in standard organic solvents, such as THF and chloroform, at room temperature. Monomer 5a 

consistently produced polymers with higher molecular weights. Presumably, this is due to the reduced 

steric hindrance at the 2- and 2’-positions of the BDF moiety.  
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Table 2-A.1. Reaction conditions and molecular weight data for PTBDFIDs 

Polymera Catalyst Yield 

(%)c 

Mw
b Mw/Mn DPn 

PToutBDFID Pd(PPh3)4 82 20,500 1.3 12 

PToutBDFID Pd2(dba)3 86 33,100 1.9 19 

PTinBDFID Pd(PPh3)4 79 35,000 1.9 21 

PTinBDFID Pd2(dba)3 84 76,200 2.3 45 

a [monomer] = 0.2 M in toluene, and Pd catalyst loading = 2 mol%. b Molecular weight data was obtained by GPC (see 

ESI). c Isolated yield. 

 We anticipated that the differences in the regiochemistry of the BDFs would result in differences in 

the optical spectra. Compounds 2b, 3b, and 4b, with the alkyl substituents on the 4 and 4’ positions of 

the thiophene rings, have less interaction with the pseudo-peri iodine, alkyne, or alkane substituents, 

and exhibit greater vibrational structure than analogs 2a-4a. Arguably, this is due to the greater rigidity 

of the overall aromatic chromophore, i.e. reduction of out-of-plane rotation of the thiophene moieties. 

The dramatically different band shapes between the members of each pair mean that comparisons of 

λmax between “a” and “b” analogs is not particularly meaningful. However, the leading edge of the 

onset of strong S1 absorption for each “a-b” pair of compounds extrapolates to a very similar 

wavelength, with each pair distinct from the other two. This reflects the intrinsic electronic similarities 

between each pair of isomers. 

  As expected, the additional conjugation of the alkynyl groups of 3a and 3b produces a red shift 

in the onset of absorption and λmax of the S1 absorption band. Compared to the alkyl substituents in 

compounds 4a and 4b, the iodo substituents in 2a and 2b induce a red-shift – albeit smaller than that of 

the alkyne – consistent with a reduction in conjugation length and orbital overlap. The UV–vis  
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Table 2-A.2. Electronic and optical properties of PTBDFIDs 

Polymer Media λmax (nm) HOMOa 

(eV) 

LUMOb 

(eV) 

Eg
opt 

(eV)c 

Eg
EC 

(eV)d 

PToutBDFID THF 399, 582     

PToutBDFID Film 403, 612 -5.7 -3.8 1.7 1.9 

PTinBDFID THF 378, 600     

PTinBDFID Film 415, 653 -5.7 -3.8 1.6 1.9 

a HOMO= -(  + 5.1) (eV).. b LUMO = -(  + 5.1) (eV). c Estimated from the optical absorption edge. d Onset of 

potentials (vs Fc). 

 absorption spectra of PTinBDFID and PToutBDFID in solution and in thin films are shown in Figure 

2-A.1 and the optical and electronic properties are summarized in Table 2-A.2. Both polymers exhibit 

two main absorption bands. The high-energy bands can be attributed to the π-π* transition, whereas the 

low energy bands are due to intramolecular charge transfer between the donor and acceptor units. In 

solution, the λmax of PTinBDFID’s low energy band is red-shifted 18 nm relative to PToutBDFID, 

whereas the λmax of PTinBDFID’s high-energy band is blue-shifted 21 nm relative to PToutBDFID. In 

the solid state, the λmax for the low energy band of PToutBDFID is blue-shifted 41 nm relative to 

PTinBDFID and the difference in the high-energy band is only 12 nm. These results suggest that 

PToutBDFID has a more twisted backbone than PTinBDFID. The optimized geometries obtained for 

isoindigo/BDF oligomers calculated using density functional theory also support the notion that 

PToutBDFID has a more twisted structure. The similarity PToutBDFID’s solution and film spectra 

indicates the steric interaction between the out facing side chain and the isoindigo group inhibits 

planarization. 

€ 

Eonset
ox

€ 

Eonset
red
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Fig. 2-A.1 UV-vis absorption of the polymers in solution and thin films. 

 The electrochemical properties of the polymers have been investigated by cyclic voltammetry (CV). 

Both polymers exhibit measureable and reproducible oxidation and reduction processes. The 

electrochemical band gaps are both approximately 0.3 eV higher than the optical band gaps (Eg
opt) 

determined via the tangent lines on the absorption spectra. This difference can be attributed to the 

electron injection barrier in the electrochemistry.24, 25 The HOMO and LUMO values of both polymers 

are similar to those reported previously for PBDT-OIO, a related terpolymer of 6, thiophene and BDT 

(LUMO -3.91 eV and HOMO -5.74 eV).26 Unfortunately, we cannot arrive at a conclusion regarding 

the relative donor strength of BDF, as the BDT group had two electron-donating alkoxy groups on the 

central benzene ring. Although, the LUMO values are less than 0.3 eV lower than those of the PC61BM 

acceptor, impeding charge transfer the HOMO level of both polymers are deep enough to ensure air 

stability, while providing for good open-circuit voltage (Voc).27, 28 

 The performance of both polymers in BHJ-PVCs was evaluated using PC61BM as the electron 

acceptor with a device configuration of indium tin oxide (ITO)/poly(3,4-ethylene 

dioxythiophene):polystyrene sulfonate (PEDOT:PSS)/polymer: PC61BM (1:4, w/w)/LiF/Al. The active 

layer processing conditions were chosen to yield a layer thickness less than 100 nm. In general (for 

P3HT systems), thicker layers (~200 nm) are better, because they absorb more light. However, since 

new generation donor/acceptor polymer films do not have a long-range order like P3HT, thicker layers 
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tend to have increased recombination due to hole traps, and thus lower efficiencies.29 The fabrication 

conditions and PVC parameters (fill factor (FF), short-circuit current density (Jsc) and Voc) are 

summarized in Table 2-A.3. The current-voltage (I-V) characteristics of our devices are shown in 

Figure 2-A.2. 

 Overall, PTinBDFID PVCs performed better than PToutBDFID-based devices in all categories. This 

is most likely an effect of the polymer’s planarity on morphology, and is currently being evaluated 

further. Although the performance of these devices is lower than other conjugated polymers, this is our 

first attempt toward fabricating PVCs from these materials. We note that the performance of most new 

systems can be dramatically improved by the optimization of processing parameters.  

Table 2-A.3. Photovoltaic performance of P12 and P13 with PCBM 

Polymer VOC 

(V) 

ISC 

(mA) 

JSC (mA/cm2) FF 

(%) 

PCE 

(%) 

      

PinBDFID 0.7366 0.208 1.66 48.6 0.590 

PoutBDFID 0.6410 0.164 1.306 36 0.301 

*Polymers films were prepared from solutions in o-DCB 10 mg/mL. 
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Fig. 2-A.2. Current-voltage characteristics of polymer PVCs (left). Normalized external quantum 

efficiency vs. wavelength curve of the PVCs (right). 

2.A.4 Conclusions 

 In conclusion, we report the efficient synthesis of novel electron-rich building blocks based on 2,6-

di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans and their use for the development of donor-acceptor 

copolymers. The highlights of this work are the overall high yields of the reactions and the versatility 

of the synthetic approach. The energy levels of the new polymers are suitable for use as donor 

materials in BHJ-PVCs. Preliminary device studies have shown good Voc and FF, but low overall 

performance. We are currently working to optimize the device performance in addition to developing 

new materials based on BDFs. 
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2.A.5 Supporting Information 

 

2.A.5.1 Device Fabrication and Characterization 

 

  All these devices were produced via a solution-based spin-casting fabrication process. All 

polymers were mixed with PC60BM (Sigma-Aldrich) (mixed 1:4 at 14 mg/mL for polymer and 56 

mg/mL for PC60BM) then dissolved in o-dichlorobenzene and magnetically stirred at 60 °C for 48 

hours. ITO coated glass slides (Delta Technologies) were cleaned by consecutive 5 minute sonications 

in (i) isopropanol and acetone, (ii) precision cleaner detergent (dissolved in deionized water), (iii) 

ethanol and methanol, and then (iv) deionized water. The slides were then dried with nitrogen and 

cleaned with air plasma (Harrick Scientific plasma cleaner) for 10 minutes. Filtered (0.45µm) 

PEDOT:PSS (Clevios PTM) was spin-coated onto the prepared substrates (9000 rpm/65 sec) after first 

being heated and stirred for one hour (80 °C, 1200 rpm). The casted PEDOT:PSS films were then 

annealed at 48 140 °C for 20 minutes. After cooling, the substrates were transferred to an argon-filled 

glovebox. After 48 hours of mixing, the Polymer:PCBM solutions were filtered (0.2 µm pore, VWR 

Scientific) and then stirred for an additional 5 hours at 60 °C . The solutions were heated up to 90 °C 

approximately 5 minutes prior to spin coating, after which the solutions were dropped onto the 

PEDOT:PSS-coated substrates by micropipette and spin-cast at 2000 rpm for 45 seconds. The active 

layer of the films was covered with a petri dish and annealed at 70 °C for 10 minutes. LiF (2 nm) and 

Al (120 nm) were successively thermally evaporated through a shadow mask under vacuum to 

complete the devices. J-V data was generated by illuminating the devices using an ETH quartzline 

lamp at 1 sun (calibrated using a crystalline silicon photodiode with a KG-5 filter). 
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PART B 
 
 

INFLUENCE OF HETEROATOMS ON PHOTOVOLTAIC PERFORMANCE OF DONOR-
ACCEPTOR COPOLYMERS BASED ON 2,6-DI(THIOPHEN-2-YL)BENZO[1,2-B:4,5-

B’]DIFURANS AND DIKETOPYRROLOPYRROLE 
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2.B.1 Abstract 

Donor–acceptor conjugated polymers based on the novel donor 3,7-didodecyl-2,6-di(thiophen-

2-yl)benzo[1,2-b:4,5-b']difuran, and either 3,6-di-2-furanyl-1,4-diketopyrrolo[3,4-c]pyrrole or 3,6-di-

2-thienyl-1,4-diketopyrrolo[3,4-c]pyrrole as the acceptor were synthesized via the Stille cross-coupling 

reaction. The alkyl chains on the diketopyrrolopyrrole monomers were varied to engineer the solubility 

and morphology of the materials. All of the polymers have similar optoelectronic properties with 

optical band-gaps of 1.3-1.4 eV, LUMO levels of -3.7 to -3.8 eV and HOMO levels of -5.5 to -5.6 eV. 

However, the furan containing polymers have much better solubility; as a result they have significantly 

higher molecular weights. When the polymers were used as donor materials along with PC71BM as the 

electron-acceptor in bulk-heterojunction photovoltaic cells, power conversion efficiencies of up to 

2.9% were obtained, with the furan-containing polymers giving the best results. 

2.B.2 Introduction 

  Since their discovery over 35 years ago, conjugated polymers have evolved from being mere 

academic curiosities into a booming global enterprise in both academic and industrial labs.30, 31 These 

organic semiconductors are being evaluated for use in a range of optoelectronic applications as they 

offer several advantages over their inorganic counterparts, including the potential to fabricate large-

area films using low cost solution processing techniques, to manufacture lightweight and flexible 

devices and to alter the materials’ properties through chemical synthesis.1, 2, 32, 33 Currently, the 

synthesis of material comprising alternating electron-donating and electron-accepting moieties is an 

effective way to alter its optical and electronic properties.5, 34 Using this approach, a number of 

materials possessing beneficial properties, such as broad absorption bands, LUMO levels that are 

appropriately offset from the acceptor, low-lying HOMO levels, and high charge carrier mobilities for 

use as donor-materials in bulk-heterojunction organic photovoltaic cells (OPVs) have been 

synthesized. As a result, power conversion efficiencies (PCE)s for polymer OPVs have exceeded 
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9%.35-38 

  The steady increase in the performance of OPVs over the past few years is a combination of 

many improvements including the development of new device architectures, the band-gap engineering 

of the donor materials, and the optimization of film morphology. Early success in the development of 

devices based on organic semiconductors was first seen with regioregular poly(3-hexylthiophene) 

(P3HT), which possesses excellent solubility, oxidative stability, and good charge carrier mobility.39, 40 

However, since P3HT has a high-lying HOMO level and a fairly wide band-gap, a number of new 

thiophene-based materials have been developed in order to address these issues while maintaining high 

charge carrier mobility. In contrast, furan has not been widely used for the synthesis of conjugated 

polymers, largely due to the difficulty involved with synthesizing substituted furans. However, furan 

has several advantages over thiophene making it a promising building block for developing conjugated 

polymers. For example, furan is isoelectronic to thiophene, but less aromatic, which can facilitate the 

formation of quiniodal structures, stabilizing the HOMO level.41 Additionally, furan based polymers 

have better solubility than their thiophene containing analogs.10, 42  

  Previously, the synthesis of a furan-containing monomer 3,6-di-2-furanyl-1,4-

diketopyrrolo[3,4-c]pyrrole (FDPP) and its use in polymers has been reported.10, 13, 43-45 

Diketopyrrolopyrrole (DPP) is a strong electron-accepting moiety that can increase the intramolecular 

charge transfer along the polymer chain and stabilize both the LUMO and HOMO energy levels of the 

resulting materials. The DPP ring system also has a symmetric coplanar structure that enhances 

interchain interactions, increasing charge carrier mobility. Since the DPP moiety is a bis-lactam, it is 

always synthesized between two arenes. Initially, 3,6-di-2-thienyl- 
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Scheme 2-B.1. Synthesis of copolymers P1-P4 

1,4-diketopyrrolo[3,4-c]pyrrole (TDPP) was widely investigated for the synthesis of 

narrow band-gap polymers for use in OPVs with PCEs of up to 5.6%.46 Recently, FDPP-

based polymers have been reported that exhibit better solubility than TDPP polymers. 

The resulting improvement in the film-forming properties has lead to PCEs as high as 

6.5%.43, 47 

  At the same time, the electron-donating benzo[1,2-b:4,5-b′]dithiophene (BDT) 

moiety has been widely investigated for the synthesis of conjugated polymers. BDT has a 

planar conjugated structure that facilitates π−π stacking, leading to good charge carrier 

mobility.6, 8, 9, 48 As a result, PCEs approaching 8% have been obtained for BDT 

copolymers.8, 49 Recently, our group50 and others41, 51-55 have investigated the use of the 

benzo[1,2-b:4,5-b’]difuran (BDF) as a building block for the synthesis of new conjugated 

polymers. In addition to the positive attributes of BDT, the smaller atomic radius of the 

oxygen relative to thiophene is expected to reduce steric hindrance between adjacent 

units, increasing planarity and conjugation.56 Consequently, BDF-containing conjugated 

polymers are expected to possess smaller band-gaps than their BDT-containing 

counterparts.  

 Based on the aforementioned considerations, we have synthesized four new donor-

acceptor copolymers composed of BDF and either FDPP or TDPP. The FDPP monomer 
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was chosen to compare with the TDPP due to its potential to enhance solubility. The 

alkyl side chains were varied to further evaluate the trade-off between improved 

solubility afforded by the branched 2-ethylhexyl chains and enhanced film forming 

properties of the linear tetradecyl chains. The performance of these materials was 

evaluated in OPVs to ascertain whether side-chain modification or heteroatom 

substitution had a greater impact on performance. 

2.B.3 Results And Discussion 

2.B.3.1 Synthesis and characterization 

  The synthetic route to the copolymers is illustrated in Scheme 2-B.1. The Stille 

cross-coupling reaction of benzodifuran 1 and the corresponding DPPs 2a-d afforded 

polymers P1-P4 in good yields (52-84%) after purification by stirring with functionalized 

silica, followed by Soxhlet extraction. All of the polymers were soluble in common 

organic solvents, such as THF, chloroform and chlorobenzene at room temperature. The 

polymers were characterized by 1H NMR and the spectra are in agreement with the 

expected polymer structures. The molecular weights were estimated using gel permeation 

chromatography (GPC) at 50 °C using THF as the eluent and the resulting data is 

summarized in Table 2-B.1. All polymers displayed strong intermolecular interactions in 

solution leading to aggregation at temperatures below 40 °C during analysis; thus, 

increasing the run temperatures allowed for the proper measurement of the molecular 

weight of individual polymer chains. The furan-containing polymers, P1 and P2, showed 

considerably higher molecular weights but also had better solubilities than their 

thiophene-containing analogues P3 and P4. This is consistent with the results reported by 

Fréchet et al, where FDPP copolymers exhibited better solubility and higher molecular 

48



www.manaraa.com

 

 

weight over those comprising TDPP.10 In our case, due to synthetic constraints, our two 

furan-containing copolymers have an equal number of thiophene and furan units. Of 

these, the polymer bearing branched 2-ethylhexyl side chains, P1, had a higher molecular 

weight than the one bearing linear tetradecyl side chains, P2. This trend was also 

observed in the set of polymers containing only thiophene in the polymer backbone, 

indicating that the improved solubility within each set is a result of the branched side 

chains. Interestingly, Fréchet and co-workers also observed that DPP-copolymers with 

both furan and thiophene in the polymer backbone had higher molecular weights than 

those containing only furan. This is increase in solubility was also seen in a series of 

oligomers containing both thiophene and furan.57, 58 Given the difficulty associated with 

synthesizing functionalized furans, increasing its content within the polymer backbone 

would be challenging. However, the previous reports indicate that such efforts may not 

improve the solubility of the resulting polymer.  

Table 2-B.1 Molecular weight and thermal data for P1-P4 

Polymer Yield 

(%)a 

Mw
b 

(kDa) 

Mn
b 

(kDa) 

PDI DPn Td
c 

(°C) 

P1 84 55.6 28.9 1.9 40 333 

P2 78 44.2 19.9 2.2 29 353 

P3 53 24.0 9.5 2.5 17 349 

P4 71 8.1 6.1 1.3 5 359 

a Isolated yield.  b Molecular weight data was obtained by GPC. c 5% weight loss 

determined by TGA in air. 
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2.B.3.2 Thermal properties 

  The thermal properties of the polymers were evaluated using thermal gravimetric 

analysis (TGA) and differential scanning calorimetry (DSC). TGA results are 

summarized in Table 1 and indicate that 5 % weight loss onsets occurred between 333-

359 °C. DSC did not reveal any observable phase transitions for temperatures up to 200 

°C; however, observable melting points were seen for all four polymers above 335 °C. 

These thermal characteristics are indicative of good stability above the operational 

temperature threshold of organic photovoltaic devices.   

Table 2-B.2 Optical and electronic properties for P1-P4 

Polymer 𝛌𝒎𝒂𝒙𝐬𝐨𝐥𝐧   

(nm) 

𝛌𝒎𝒂𝒙𝐟𝐢𝐥𝐦   

(nm) 

𝐄𝐠𝐨𝐩𝐭a  

(eV) 

HOMOb 

(eV) 

LUMOb 

(eV) 

𝐄𝐠𝐄𝐂d 

(eV) 

P1 658 774, 668 1.4 -5.5 -3.7 1.8 

P2 663 739, 668 1.4 -5.5 -3.8 1.7 

P3 657 752, 673 1.3 -5.6 -3.8 1.8 

P4 671 678 1.4 -5.6 -3.7 1.9 

a Estimated from the absorption onset of the film. b HOMO= -(E2345627  + 5.1) eV. c LUMO 

= -(E23456859   + 5.1) eV. d E:;< = LUMO - HOMO. 

2.B.3.3 Optical and electrochemical properties  

  The normalized absorption spectra of P1-P4 in dilute CHCl3 solution and thin 

films are shown in Figures 2-B.1 and 2-B.2, respectively, and the optical data is 

summarized in Table 2-B.2. All four polymers exhibit two distinct absorption bands in 

both solution and film. The high-energy band is attributable to localized π-π* transitions, 
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while the broad, low-energy band corresponds to intermolecular charge transfers between 

the electron-donating and electron-accepting units. In solution, the λmax of both polymers 

P1 and P3 is nearly identical, at 658 nm and 657 nm, respectively. For P2 and P4, the 

λmax has a slight bathochromic shift, but both polymers exhibit a significant low-energy 

shoulder that their structural counterparts do not. This shoulder results from the 

interaction between aggregated polymer backbones, and is thus more abundant in both P2 

and P4, which bear linear side chains, than it is in P3 and P4 that bear branched side 

chains. 

 

Fig. 2-B.1 UV-Vis absorption of P1-P4 in solution  

 

 

Fig. 2-B.2 UV-Vis absorption of P1-P4 in film 
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  As thin films, all four polymers display a large bathochromic shift (~100 nm), 

which suggests stronger molecular interactions or aggregation than in solution. 

Additionally, all four polymers have optical band-gaps within 0.1 eV of each other, as 

estimated from the onset wavelength of the film absorption, indicating that effective 

conjugation was reached in each case. Despite this similarity, the polymers displayed 

moderate variations in the low energy absorption bands. The furan-containing polymers, 

P1 and P2, have the most red-shifted absolute λmax at 744 nm and 739 nm, respectively, 

whereas the thiophene-containing polymer P3 has only a local λmax in the same region at 

752 nm and P4 only displays a weakly defined shoulder around 750 nm. This data 

suggests that the presence of this absorption band in P1 and P2 correlates well with the 

higher molecular weights, while its presence diminishes as the molecular weight declines 

in P3 and P4. 

  To further elucidate the electrochemical properties of the polymers, the redox 

behaviour was measured by cyclic voltammetry. All four polymers exhibit measureable 

and reproducible oxidation and reduction processes. The HOMO and LUMO levels were 

estimated from the onset of oxidation and reduction using the absolute energy level of 

ferrocene/ferrocenium (Fc/Fc+) as 5.1 eV under vacuum and are summarized in Table 2. 

For all four polymers, the HOMO levels ranged between -5.5 to -5.6 eV, deep enough to 

guarantee good air stability. The LUMO levels ranged from -3.7 to -3.8 eV giving an 

average electrochemical band-gap of 1.8 ± 0.1eV. These values are statistically similar 

enough to suggest that replacing the furans in P1 and P2 to the thiophenes in P3 and P4 

has only a minor influence on the electrochemical properties. It is also of note that the 

optical band-gaps are all estimated to be slightly larger than the electrochemical band-
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gap, which correlates well to the expected energy barrier associated with the interface of 

the polymer film and the electrode surface.24, 25  

2.B.3.4 Photovoltaic devices 

  The performance of all four polymers in OPVs was evaluated using [6,6]-phenyl-

C71-butyric acid methyl ester (PC71BM) as the electron acceptor with a device 

configuration of indium tin oxide (ITO)/poly(3,4-ethylene dioxythiophene): polystyrene 

sulfonate (PEDOT:PSS)/polymer:PC71BM (1 : 2, w/w)/LiF/Al. The active layer was 

deposited from 30 mg/mL o-DCB solutions, using processing conditions selected to yield 

a thickness of about 100 nm. In some cases, analogous devices were prepared using 3% 

of 1-chloronapthalene (CN) as a high-boiling solvent additive to improve polymer/PCBM 

blend morphology. The current density-voltage (J-V) curves of the OPVs are shown in 

Figure 2-B.2. The resultant photovoltaic performance, including short circuit current 

density (JSC), open circuit voltage (VOC), fill factor (FF) and power conversion efficiency 

(PCE) are shown in Table 2-B.3.  

  Among the devices fabricated without solvent additive, P2 gave the highest PCE, 

at 2.77%. Conversely, the P1- and P3-based devices had somewhat lower efficiencies 

with respective values of 2.28% and 2.10%. While all three of these polymers gave open 

circuit voltages of ~0.70 V, P2 combines superior photocurrent with a good fill factor. 

This is a result of the polymer’s good molecular weights and the presence of linear alkyl 

chains, which typically results in ideal blends without the addition of additives. 

Expectantly, the devices fabricated from P4 performed significantly worse, only 

returning PCEs of ~1.0 %, a result of decreases in all categories. This outcome is a 

consequence of the poor solubility and significantly lower molecular weights of P4. Due 
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to these deficiencies, no attempts were made to optimize P4’s devices through solvent 

additives. 

  We initially evaluated the use of diiodooctane as a solvent additive,59 but saw no 

improvement in the PCE. However, when CN was used as a solvent additive,60 the device 

performance improved in all cases. The most notable increase was observed in the P1-

based devices, where the PCE improved to 2.89%, largely due to an increase in the 

photocurrent. While both the P2- and P3-based devices also saw an increase in 

photocurrent, this improvement was less than in the case of P1. Accordingly, the P2- and 

P3-based devices had much smaller gains in overall PCE. 

Table 2-B.3 Photovoltaic device performance of P1-P4 with PCBM 

Polymer Additive JSC 

(mA/cm2) 

VOC 

(V) 

FF  PCE 

(%) 

P1 none -5.1 0.70 0.63 2.28 

 3% CN -7.0 0.69 0.60 2.89 

P2 none -7.0 0.66 0.60 2.77 

 3% CN -7.7 0.65 0.57 2.81 

P3 none -6.7 0.67 0.47 2.10 

 3% CN -7.4 0.66 0.47 2.28 

P4 none -4.2 0.59 0.39 0.97 

 

   When comparing devices based on the furan-containing polymers P1 and P2, both 

with identical polymer backbones, the impact that solvent additives can have on blend 

morphology is made clear. With the 3% CN additive, the devices from P2 experienced a 
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negligible improvement in PCE (+0.04%); however, P1-based devices consistently gave 

better efficiencies with the CN additive. Thus, solvent additives have the potential to 

neutralize morphological defects resulting from the use of branched side chains. 

Arguably, this effect is not as pronounced in the devices based on P3 where reduced 

molecular weights lead to poorer film morphologies that cannot be overcome.  

  Since all four polymers show similar optical and electronic properties, factors 

related to morphology and charge carrier mobility play a larger role in overall device 

performance. Again, these crucial device characteristics appear to coincide with higher 

molecular weights. 

 

Fig. 2-B.3. Current-voltage characteristics P1-P4-based OPVs without solvent additives. 
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Fig. 2-B.4. Current-voltage characteristics for P1-P3-based OPVs using 3% CN as a 

solvent additive. 

 

2.B.4 Conclusions 

  A related series of new donor-acceptor copolymers based on diketopyrrolopyrrole 

and 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b’]difuran have been synthesized. The 

substitution of the DPP monomer has been modified to bear all possible combinations of 

either thiophene or furan, and branched 2-ethylhexyl or linear tetradecyl alkyl chains. All 

four polymers displayed similar optoelectronic properties with an estimated average 

HOMOs of -5.6 eV, LUMOs of -3.8 eV and optical band-gaps of around 1.4 eV. Despite 

these similarities, the polymers displayed varied molecular weights due to the 

aforementioned modifications to the DPP unit. The furan-containing polymers P1 and P2 

achieved higher molecular weights than either of the thiophene-containing analogues. 

Likewise, the branched side chains afforded greater solubility than did the linear side 

chains. Interestingly, when OPVs were fabricated from the polymers, those based on P2 
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exhibited the best PCE (~3%) owing to the presence of linear side chains. Devices from 

P1 were able to achieve comparable efficiencies to the P2 devices through the use of 

solvent additives. However, devices based on P3 and P4 achieved maximum efficiencies 

of only ~2.3% and 1.0%, respectively, due to poor solubility. These results further 

demonstrate that incorporating furan into polymer backbones typically dominated by 

thiophene can vastly improve solubility and molecular weights eliminating the need for 

large, branched alkyl side chains. These fundamental improvements are integral to the 

creation of new, high-efficiency OPVs by enhancing both film morphology and charge-

carrier mobility. 
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2.B.5 Supporting Information 

2.B.5.1 Fabrication of photovoltaic devices 

 All devices were produced via a solution-based, spin-casting fabrication process. All 

polymers were mixed with PC71BM (SES Research) (mixed 1:2 with a total solution 

concentration of 30 mg/mL for PC71BM) then dissolved in o-dichlorobenzene and stirred 

at 95°C for 48 hours. ITO coated glass slides (Delta Technologies) were cleaned by 

consecutive 10 minute sonications in (i) MucasolTM detergent (dissolved in deionized 

water), 2x, (ii) deionized water, (iii) acetone, and then (iv) isopropanol. The slides were 

then dried in an oven for at least 3 hours and cleaned with air plasma (Harrick Scientific 

plasma cleaner) for 10 minutes. Filtered (0.45m m) PEDOT:PSS (Clevios PTM) was spin-

coated onto the prepared substrates (2000 rpm/60 sec) after first  being stirred for 10 

minutes at room temperature. The PEDOT:PSS films were annealed at 150 °C for 30 

minutes. After cooling, the substrates were transferred to an argon-filled glovebox.  After 

48 hours of mixing, the polymer:PCBM solutions were filtered (0.45 m m pore, GS-Tek) 

and simultaneously dropped onto the PEDOT:PSS-coated substrates and spin-cast at 

1000 rpm for 120 seconds. The films were dried under vacuum overnight.  LiF (1 nm) 

and Al (100 nm) were successively thermally evaporated through a shadow mask under 

vacuum to complete the devices. J-V data was generated by illuminating the devices 

using an ETH quartzline lamp at 1 sun (calibrated using a crystalline silicon photodiode 

with a KG-5 filter). 
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CHAPTER 3 
 

THE EFFECT OF HETEROATOM SUBSTITUTION ON THE SOLAR CELL 

PERFORMANCE OF COPOLYMERS BASED ON TWO DIMENSIONAL 

BENZO[1,2-B:4,5-B’]DIFURAN-BASED DONOR-ACCEPTOR 

 

Monique D. Ewan, Brandon M. Kobilka and Malika Jeffries-EL* 

Department of Chemistry, Iowa State University, Ames, IA 50011 

 

3.1 Abstract 

A series of donor-acceptor copolymers based on two-dimensional benzo[1,2-b’4,5-

b’]difuran (BDF) and either benzothiadiazole (BT) or benzoselenadiazole (BSe) were 

synthesized by Stille cross-coupling reactions in order to evaluate the effect of the 

heteroatom substitution on the properties of the resulting polymers. The performance of 

the polymers as an active layer donor material in solar cells was evaluated. The BT based 

polymer obtained the better solar cell performance with a power conversion efficiency of 

1.03%. 

3.2 Introduction 

The recent years have seen an incredible increase in the performance of bulk 

heterojunction solar cells. Through these improvements organic solar cells have become 

closer to being a viable replacement for their inorganic counterparts due to their cheaper 

production costs and abilities to be used in flexible substrates1-5. Another major 

advantage of organic solar cells is the ability to fine-tune the energy levels of the their 
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active materials. This is readily accomplished trough the use of donor – acceptor (D-A) 

polymers, which also enable tuning of the materials, bandgaps, charge carrier mobility 

and film morphology 6-10. To date, D-A conjugated polymers have been used as a active 

components in OSC and have resulted in some of the highest reported power conversion 

efficiencies (PCEs) for this field11-14. 

There have been a lot of studies done to examine the effect of replacing sulfur (S) 

with selenium (Se) within the aromatic rings of conjugated polymers15-18. The 

replacement of sulfur with selenium tends to induce a redshift in the absorption 

spectrum19, 20. This is because, even though it is isoelectronic with sulfur, the selenium 

atom is much larger in size and is less electronegative than sulfur21, 22. Therefore, 

selenium-containing polymers are expected to be more effective than sulfur at extending 

the absorption spectrum towards the infrared region. Selenium is also more polarizable 

than sulfur, and therefore polymers experience Se-Se lone pair interactions and can 

achieve high charge carrier mobilities23.  

Benzothiadiazole (BT) has been widely used as an electron acceptor unit in high 

efficiency D-A copolymers24-26. Recently, there have been efforts to replace the sulfur 

with selenium17, 27, 28 to yield benzoselenadiazole (BSe). However, there has not been a 

lot of work in this area and therefore there still remains a need to compare the properties 

anaogous copolymers to get a more in depth understanding of the effects of selenium 

substitution17.  

The synthesis of two-dimensional (2-D) conjugated polymers is another way to 

improve the performance of organic semiconductors in bulk heterojunction solar cells. 

Here, functionalized aromatic groups are used as side chains instead of the usual alkyl or 
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alkoxy substitutions29. This provides the advantage of broader UV-Vis absorption due to 

the increased conjugation from the aromatic side chains30, 31. Additionally, 2-D systems 

show a greater planarization, which leads to improved π- π interactions and higher hole 

mobilities32. The area of 2-D polymers also needs to be further explored. Some of the 

current polymers are based on the donor-type molecule benzo[1,2-b’4,5-b’]dithiophene 

(BDT) and benzo[1,2-b’4,5-b’]difuran (BDF), where the aromatic side chains are on the 

4 and 8 positions of the molecule33-36. However, only a few groups have evaluated the 

impact of 2-D conjugation on BDT in the 3 and 7 positions37 , and no one has looked at 

this effect in BDF. In this work we report the synthesis of copolymers based on 2-D BDF 

and BT or BSe comonomers. 

 
3.3 Results and Discussion 
 
3.3.1 Synthesis and characterization 
 

	
Scheme	3-1	

 
The synthetic route for the benzo[1,2-b:4,5-b’]difuran-based polymers is depicted 

in Scheme 3-1. Compound 5 was synthesized according to our group procedure, while 

Compounds 2 and 4 were synthesized according to literature procedures. The 

polymerizations were carried out by Stille cross-coupling of either monomer 2 or 4 with 

the 2-D BDF monomer to produce polymers PBDFBT and PBDFBSe. This 

polymerization was followed by Sohxlet extraction with acetone, methanol, hexanes and 
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chloroform followed by stirring with functionalized silica, and precipitation into 

methanol. Both polymers were soluble in common organic solvents such as THF and 

chloroform at room temperature. The molecular weights of the polymers were estimated 

using gel permeation chromatography (GPC) at 40 °C using CHCl3 as the eluent and the 

resulting data is summarized in Table 3-1.PBDFBSe had a higher molecular weight (Mw) 

relative to PBDFBT and also a lower polydispersity index (PDI). Overall molecular 

weights were low and the degrees of polymerization were 6 and 7 for PBDFBT and 

PBDFBSe respectively.  

 

 

Table 3-1. Molecular weight data for polymers 

Polymer Mw  

(kDa) 

Mn
  

(kDa) 

PDI DPn 

PBDFBT 12.7 8.0 1.6 6 

PBDFBSe 15.3 10.0 1.5 7 

 

	
3.3.2 Optical Properties 

Normalized UV-Vis absorption spectra of the copolymers in dilute chloroform 

solutions and as solid thin films on glass substrates are shown in Figures 3-1 and 3-2. The 

absorption spectra of the polymers were similar and contained two major absorption 

bands. The higher energy peak is attributed to the π- π* transition of the main chains38, 39. 

The lowest energy peak at the longer wavelength is attributed to the strong intramolecular 

charge transfer typical of D-A copolymers40. In solution the λmax of PBDFBSe low 
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energy band is red-shifted 29 nm relative to PBDFBT and also red-shifted 5 nm for the 

higher energy band. In the solid state, the λmax for the lower energy band of  PBDFBSe is 

3 nm red-shifted relative to PBDFBT. However, the higher energy band was blue-shifted  

by 8 nm relative to PBDFBT. Going from solution to solid state, a larger redshift (~ 41 

nm) was observed for PBDFBT film than for the PBDFBSe. This suggests that the 

PBDFBT polymer may have stronger interactions between polymer chains than 

PBDFBSe in the solid state41. The estimated optical band gaps were identical for both 

polymers.  

 

 

 
 

 
 

Figure 3-1.  Normalized UV-Vis absorption spectra of the polymers in chloroform 
solution 
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Figure 3-2. Normalized UV-Vis absorption spectra of polymer thin films 

 
 
 
Table 3-2. Optoelectronic properties of polymers 

	

 
 
 
 
 

 

 

 

Polymer λmax, soln 
(nm) 

λmax, film  
(nm) 

Eg
opt 

 (eV) 
HOMO 

(eV) 
LUMO 

(eV) 
Eg

EC (eV) 

PBDFBT 314,381,527 319,411,568 1.6 -5.5 -3.6 1.9 
PBDFBSe 347,386,556 355,403,571 1.6 -5.5 -3.5 2.0 

67



www.manaraa.com

 

3.3.3 Electrochemical properties 

 

Cyclic voltammetry (CV) was employed to investigate the redox behavior of the 

polymers and to estimate their HOMO and LUMO levels. These HOMO/LUMO levels 

were estimated from the onset of oxidation and reduction using ferrocene/ferrocenium 

(Fc/Fc+) as 4.8 eV under vacuum and are summarized in Table 3-2. Both polymers 

exhibit measurable oxidation and reduction processes. The electrochemical bandgaps are 

approximate 0.3 – 0.4 eV larger than the optical bandgaps. This difference is attributed to 

the electron injection barrier in electrochemistry42. The HOMO levels were identical at -

5.5 eV, and are deep enough to ensure air stability43. PBDFBT had a slightly lower 

LUMO of -3.6 eV compared to -3.5 for PBDFBSe. As a result, it had the smaller 

electrochemical bandgap. It is important to note that with the errors associated with CV, 

this difference might be negligible. The LUMO levels of the polymers are all 0.3 eV 

greater than that for PCBM (-3.9 eV), which provides enough driving force for charge 

separation and transfer 43. 

 

5.3.4 Evaluation of Photovoltaic Properties 

The performance of all two polymers in OPVs was evaluated using PC71BM as 

the electron acceptor with a device configuration of ITO/PEDOT:PSS/polymer:PBCM 

(1:2), w/w)/Ca/Al.  The active layer processing conditions were chosen so that the 

thickness of the active layer blend was ~100 nm. The solar cell performances are 

summarized in Table 3-3. The current density- voltage (J-V) characteristics of the devices 
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are shown in Figures 3-3 and 3-4. PBDFBT had better solar cell performances relative to 

PBDFBSe. This could be due to the fact that it showed a stronger absorbance in the 

longer wavelength range. Also, because PBDFBT showed more of a redshift going from 

solution to film, it is possible that the film morphology of PBDFBT in active layer was 

better, promoting better charge transport.  In the solar cell devices, it produced a much 

higher VOC, as well as a higher current and a slightly higher FF. 

 

	

Figure 3-3. J-V curve for PBDFBT polymer 
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Figure 3-4. J-V curve for PBDFBSe polymer 

	
	
	
Table 3-3.Photovoltaic properties of the OSCs based on the two copolymers 

Polymer Polymer: PCBM ratio VOC 

(V) 

JSC (mA/cm2) FF (%) PCE (%) 

PBDFBT 1:3 0.76 3.78 35.8 1.03 

PBDFBSe 1:2 0.69 2.27 31.6 0.49 

 

 

3. 4 Conclusions 

A new series of conjugated copolymers based on BT or BSe with two 

dimensional benzo[1,2-b:4,5-b’]difuran were synthesized. The position of the thienyl side 
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chains were on the, relatively unexplored, 3 and 7 positions of the BDF core. The 

resulting polymers had similar electronic but slightly different optical properties.  The 

photovoltaic performances, overall, were low. However, we were able to ascertain that, 

for this polymer series, the BT analogue had a distinctly better performance. More work 

needs to be done to evaluate the morphology of the films, using atomic force microscopy 

(AFM) as well as to reproduce the polymers with higher molecular weights. 

 
3. 5 Experimental  

3.5.1 Materials and General Experimental Details.  

Toluene was dried using an Innovative Technologies solvent purification system. 

Air and moisture sensitive reactions were performed using standard Schlenk techniques. 

Solvents used for palladium-catalyzed reactions were deoxygenated prior to use by 

bubbling a stream of argon through the solvent with vigorous stirring for approximately 

60 minutes. All chemical reagents were purchased from commercial sources and used 

without further purification unless otherwise noted. SiliaMetS® Cysteine was purchased 

from SiliCycle, Inc.  4,7 dibromobenzo[c][1,2,5]thiadiazole (2), 3,6-dibromobenzene-1,2-

diamine (3) and 4,7 dibromobenzo[c][1,2,5]thiadiazole (4)   were synthesized according 

to literature procedures. Nuclear magnetic resonance (NMR) spectra were carried out in 

CDCl3 and recorded on Varian MR (400 MHz) or a Bruker Advance-III (600 MHz). 1H 

NMR spectra were internally referenced to the residual protonated solvent peak. In all 

spectra, chemical shifts are given in ppm (δ) relative to the solvent. Gel permeation 

chromatography (GPC) measurements were performed on a separation module equipped 

with two 10 µm AMGPC-gel columns (cross-linked styrene-divinyl benzene copolymer) 

connected in series (guard, 10,000 Å, 1,000 Å) with a UV-Vis detector. Analyses were 
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performed at 40 °C temperature using chloroform as the eluent with a flow rate of 1.0 mL 

min-1. Calibration was based on polystyrene standards. Cyclic voltammetry was 

performed using a e-DAQ e-corder 410 potentiostat with a scanning rate of 100 mV s-1. 

The polymer solutions (1-2 mg mL-1) were drop-cast onto a platinum electrode. Ag/Ag+ 

was used as the reference electrode and a platinum wire as the auxiliary electrode.  The 

reported values are referenced to Fc/Fc+ (-4.8 eV versus vacuum). All electrochemistry 

experiments were performed in deoxygenated CH3CN under an argon atmosphere using 

0.1 M tetrabutylammonium hexafluorophosphate as the electrolyte. Absorption spectra 

were obtained on a photodiode-array Agilent 8453 UV-visible spectrophotometer using 

polymer solutions in CHCl3 and thin films. The films were made by spin-coating 25 x 25 

x 1 mm glass slides using solutions of polymer (2 mg/mL) in CHCl3 at a spin rate of 1200 

rpm on a Headway Research, Inc. PWM32 spin-coater. 

3.5.2 General Polymerization Procedure. 

To a stirred, deoxygenated solution of bisstannane (5) and either 2 or 4 in 10 mL 

of toluene was added Pd2(dba)3 (2 mol %) and tri(o-tolyl)phosphine (8 mol %). The 

reaction mixture was heated to reflux, under argon, and stirred for 12-36 hours. The 

polymer was end-capped by the addition of an excess amount of trimethyl(phenyl)tin and 

iodobenzene, each followed by a 4 hour period of reflux. The reaction mixture was 

cooled to 50 °C and diluted with chloroform. A small portion of SiliaMetS® Cysteine 

was added and the reaction mixture was stirred for 8 hours followed by precipitation into 

cold methanol and filtration. The polymer was purified via Soxhlet extraction by 

subsequently rinsing with methanol, acetone and hexanes and finally extracted with 
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chloroform. Most of the chloroform was removed in vacuo and the polymer was 

precipitated into methanol, collected by filtration and dried in vacuo. 

Poly(4,4'-((3,7-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']difuran-2,6-

diyl)bis(3-decylthiophene-5,2-diyl))bis(benzo[c][1,2,5]thiadiazole))(PBDFBT). 

Polymer was obtained as purple solid  from 5 and 2; GPC: Mn =8.0 kDa, Mw = 12.7 kDa, 

PDI = 1.6. 

Poly(4,4'-((3,7-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']difuran-2,6-

diyl)bis(3-decylthiophene-5,2-diyl))bis(benzo[c][1,2,5]selenadiazole))(PBDFBSe). 

Polymer obtained as a dark purple solid (275 mg, 83% yield) from 5 and 4; GPC: Mn = 

10.0 kDa, Mw = 15.3 kDa, PDI = 1.5. 

3.5.3 Device Fabrication and Characterization. 

All polymers were mixed with PC71BM (mixed at a 1:2 weight ratio with a total 

solution concentration of 30 mg/mL) then dissolved in o-dichlorobenzene and stirred at 

90 °C for 48 hours. ITO-coated glass substrates were cleaned sequentially by 

ultrasonication in MucasolTM detergent (dissolved in deionized water), deionized water, 

acetone and acetone. The slides were dried in an oven for at least three hours followed by 

O2 plasma exposure for 10 minutes. Filtered (0.45 µm) PEDOT: PSS was then spin-

coated onto the prepared substrates (2000 rpm/60 s). The PEDOT: PSS films were then 

annealed at 150 °C for 30 minutes. At this point, the substrates were transferred to an 

argon – filled glovebox. The thickness of PEDOT: PSS layer was approximately 40 nm. 

After 48 hours of mixing, the polymer: PCBM solutions were filtered (0.45 µm) and 

immediately dropped onto the PEDOT:PSS coated substrates and spincast at 1000 rpm 

for 120 seconds. Photovoltaic devices with a configuration of ITO/PEDOT:PSS/ 
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Polymer:PC71BM/Ca/Al were fabricated. A cathode was prepared by sequentially 

depositing a Ca film (20 nm) and an Al film (100 nm) through a shadow mask. The 

photovoltaic devices had an area of 0. 06 cm2 and were tested under simulated AM 1.5 G 

irradiation (100 mWcm-2, calibrated with Daystar Meter) using a SoLux Solar Simulator, 

and the current-voltage (I-V) curves were measured using a Keithley 2400 multisource 

meter.  
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4,7 dibromobenzo[c][1,2,5]thiadiazole (2). To a stirred solution of 

benzo[c][1,2,5]thiadiazole (10.15 g, 74.5 mmol) and 48% HBr (150 mL) was added Br2 

(36.69 g 229.5 mmol) in HBr (100 mL). The addition for the Br2 solution was drop-wise 

over 4-6 hours. The reaction was heated to reflux for 16 hours after which time it was 

cooled to room temperature. A solution of NaHSO3 was added. The reaction mixture 

filtered and washed with excess H2O as well as cold ether. The solid product was 

recrystallized using acetone to yield yellow needles. (17.19 g 78.5%). 1H NMR (400 

MHz; CDCl3) δ (7.73 s, 2H). 

3,6-dibromobenzene-1,2-diamine (3). NaBH4 (2.94 g, 77.9 mmol) was added portion-

wise to a suspension of 4,7 dibromobenzo[c][1,2,5]thiadiazole (2)  ( 1.23 g, 4.18 mmol) 

in ethanol (42 mL) at 0° C. The reaction mixture was stirred for 20 hours at rt. The 

solvent was then evaporated and water (200 mL was added). The mixture was extracted 

with ether, washed with brine and dried over MgSO4. The solvent was removed in vacuo 

to afford the product as a tan solid (0.9 g. 81%). 1H NMR (400 MHz; CDCl3) δ (6.85, s, 

2H). 

4,7 dibromobenzo[c][1,2,5]thiadiazole (4). 3,6-dibromobenzene-1,2-diamine (3) (1.15 g, 

3.92mmol) and SeO2 (0.52 g, 4.7 mmol) were refluxed in ethanol overnight. The reaction 

mixture was extracted with DCM and washed with water three times. It was then dried 

over MgSO4 and the solvent was evaporated. The product was recrystallized from 

acetone to give yellow crystals (1.21 g, 94%). 1H NMR (400 MHz; CDCl3) δ (7.65, s, 

2H) 
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3.7.2 1H NMR spectra of monomers 
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4.1 Abstract 

Three conjugated polymers comprised of dioctyl-dithieno-[2,3-b:2’,3’-d]silole and a 

donor-acceptor-donor triad of either cis-benzbisoxazole, trans-benzobisoxazole or trans-

benzobisthiazole were synthesized via the Stille cross-coupling reaction. The impact of varying 

the heteroatoms and/or the location within the benzobisazole moiety on the optical and electronic 

properties of the resulting polymers was evaluated via cyclic voltammetry and UV-Visible 

spectroscopy. All of the polymers have similar optical band-gaps of ~1.9 eV and highest 

occupied molecular orbital levels of -5.2 eV. However, the lowest unoccupied molecular orbitals 

(LUMO) ranged from -3.0 – -3.2 eV. Interestingly, when the polymers were used as donor 

materials in bulk-heterojunction photovoltaic cells with PC71BM as the electron-acceptor, the 

benzobisoxazole-åbased polymers gave slightly better results than the benzobisthiazole-

containing polymers with power conversion efficiencies up to 3.5 %. These results indicate that 

benzobisoxazoles are promising materials for use in OPVs. 

4.2 Introduction 

Nowadays conjugated polymers (CP)s have become ubiquitous in applications such as 

field-effect transistors,1, 2 light emitting diodes,3-5 photovoltaic cells,6-8 and sensors.9, 10 CPs offer 

several advantages over their inorganic counterparts including solution processability potentially 

reducing fabrication costs, and the ability to tune their properties via organic synthesis, which 

enables optimization for use in specific applications.  Currently, one of the most effective 

strategies for tuning the optical and electronic properties of CPs is through the incorporation of 

alternating electron donating and electron accepting comonomers within the polymer 

backbone.11-13 This approach has afforded many materials with narrow band-gaps suitable for 
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effective harvesting of solar energy. However, in most organic photovoltaic cells (OPV)s a bulk 

heterojunction is formed by using the CP as a donor material and blending it with a fullerene 

acceptor, such as PC61BM or PC71BM. Thus, the energy levels of both materials must be well 

aligned for efficient electron transfer between the two materials.14, 15 Additionally, the 

morphology should be fine enough to enable efficient dissociation of electron-hair pairs at the 

donor:acceptor interfaces; at the same time coarser domains are also required to efficiently 

transport the charges to the electrodes. Although CP based OPVs are rapidly approaching the 10 

% power conversion efficiency (PCE) recommended for them to be competitive commercially, 

the development of new materials remains an important area of research.16-18 In particular the 

development of efficient donor materials that address practical aspects of commercialization 

such as facile synthesis and purification of monomers, and enhanced thermal and environmental 

stability of the resulting material are still needed.19 

Polybenzobisazoles are a class of polymers that are known for their exceptional thermal 

stability and high tensile strength of fibers spun from them.20-23 For example, poly(p-phenylene-

2,6-benzobisoxazole) is a liquid crystalline polymer based on benzo[1,2-d; 4,5-

d’]benzobisoxazole that is spun into fibers commercially sold under the name Zylon®.21 Due to 

the previous use of polybenzobisazoles in high performance applications, all of the necessary 

monomers can be synthesized on industrial scale, and purified without the use of column 

chromatography. This is advantageous for large-scale synthesis. Furthermore, the benzobisazole 

ring system is electron-deficient and planar, which leads strong intermolecular interactions and 

good charge transport properties within polymer films.24-26 Despite these advantages, the use of 

benzobisazoles in optoelectronic materials has been nominal due to the harsh reaction conditions 

used for their synthesis and their poor solubility. Traditionally, benzobisazoles are synthesized 
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by an acid catalyzed condensation reaction at high temperatures.22, 23 Such reaction conditions 

not only limit the types of substituents that can be on the monomer but residual acid also results 

in undesirable doping of the polymer and can also catalyze the degradation of the material in 

sunlight.27 To address these limitations, our group has developed a mild high yielding synthesis 

of functional benzobisazoles via an orthoester condensation reaction.28-30  

To date, there are only a few reports on the synthesis and photovoltaic properties of 

donor-acceptor polymers comprising benzobisazoles.31-37 Jenekhe and coworkers reported a PCE 

of 2.1 % for a quarterthiophene benzobisthiazole polymer.31 Our group reported a PCE of only 

0.6 % for a related benzobisthiazole polymer, but obtained a PCE of 1.1 % for the isoelectronic 

benzobisoxazole polymer.33 Although all of these polymers exhibited good charge carrier 

mobilities, they had relatively wide band gaps (1.9 – 2.1 eV), limiting the harvesting of solar 

energy. To improve on the properties of this system, we decided to evaluate the electron rich 

dithienosilole (DTS) moiety. This silicon bridged fused bithiophene system features two alkyl 

chains that impart excellent solubility to the resulting polymer, while the long C-Si bonds move 

the alkyl chains away from the ring system, thereby allowing for improved π-stacking. 

Additionally, the σ*-orbital in DTS is able to interact with the π*-orbital of the bithiophene, 

giving a conjugated, planar system further increasing π-stacking interactions and the long-range 

order.38 Furthermore, DTS has a lower-lying (LUMO) and highest occupied molecular orbital 

(HOMO) than other bithiophene derivatives, which can reduce the polymer band gap and 

increase the open circuit voltage (Voc) of the devices fabricated from them affording PCEs as 

high as 7.3 %.39 Jenekhe and coworkers reported a PCE of 2.1 % for a BHJ device using a 

dithienosilole-dithienylbenzobisthiazole polymer as the donor and PC71BM as the acceptor.32 

Since, our previous results indicate that polymers incorporating the benzobisoxazole moiety 
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exhibited higher Voc and PCE in comparison to the analogous benzobisthiazole polymers, we set 

out to evaluate the optical and electronic properties of a series of polymers containing DTS and 

the isomeric benzo[1,2-d; 5,4-d']bisoxazole (cis-BBO) and benzo[1,2-d; 4,5-d']bisoxazole (trans-

BBO) and the isoelectronic benzo[1,2-d; 4,5-d']bisthiazole (trans-BBZT). We note that could not 

include the cis-BBZT polymer in our studies as the synthesis of the required starting material, 

4,6-diamino-1,3- benzenedithiol has not been reported in the modern era. Our attempts to prepare 

this compound according to literature procedure yield different products from the reports. 

Furthermore, all efforts to synthesize this compound in our labs using new approaches have been 

unsuccessful. Scheme 4-1 summarizes all polymer syntheses.  

 

	

Scheme 4-1 

4.3 Results and Discussion 

The weight-averaged (Mw), number-averaged (Mn) molecular weights and polydispersity index 

(PDI) as estimated using GPC are summarized in Table 1. The number averaged degree of 

polymerization (DPn) for the polymers was determined to range from 9-12. Unfortunately, the 

limited solubility of the polymers the disproportionate ratio of alkyl to aryl protons and the 
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generally lower signal to noise obtained for quarternary protons prevented analysis by 1H NMR 

spectroscopy. Thermogravimetric analysis (TGA) revealed that all polymers were thermally 

stable with 5 % weight loss onsets occurring above 300 °C under air. None of the polymers 

exhibited any glass transitions as shown by differential scanning calorimetry (DSC) .  The results 

are summarized in Table 1.  

Table 4-1. Physical characterization of P1 – P3. 

Polymer yielda 

(%) 

Mn
b 

(kDa) 

PDIb DPn Td 

(ºC)c 

P1 89 11.6 2.3 12 308 

P2 83 12.4 2.6 12 306 

P3 55 9.5 2.2 9 315 

a Isolated yield bDetermined by GPC in CHCl3 using polystyrene standards.. c 5% weight loss temperature by TGA 

in air. 

4.3.1 Optical and Electrochemical Properties.  

The optical properties of the polymers were investigated using UV-Visible absorption 

spectroscopy in solution and solid state. The normalized absorbance spectra of the polymer 

solutions in dilute chloroform solution and in the solid state are shown in Figures 4-1 and 4-2, 

respectively. The data is summarized in Table 2. In solution, the λmax of all the polymers are 

similar. However, P1 and P2 have small shoulders arising from aggregation in polymer 

backbone,31 whereas P3 exhibits a single, featureless absorbance band. As thin films, the λmax 

values for P1, P2 and P3 are 524 nm, 536 nm and 549 nm respectively. These absorbance 
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spectra are slightly broader than the corresponding solution spectra, resulting in bathochromic 

shifts of 2 nm – 30 nm in the absorption maximum. This suggests a slight increase in the 

backbone planarization and π- stacking in the solid state.41 The film λmax of P3 is the same as that 

reported by Jenekhe for a similar polymer which had branched alkyl chains on the dithienosilole 

unit and the alkyl chain on the thiophenes flanking the benzobisthiazole moiety was facing 

inwards.32 The solution and thin film λmax values of P1 – P3 are bathochromically shifted by 70 – 

95 nm relative to our previous reported polymers which employed bithiophene as the donor.33 

This can be attributed to the fused dithienosilole ring system which can lead to a more rigid, 

coplanar backbone thereby increasing the effective π-conjugation length, decreasing the band 

gap and red-shifting the absorbance spectra.  

The optical band gaps for P1 – P3 were estimated from the onset wavelength of the polymers 

films and range from 1.9 – 2.0 eV.  

 

Figure 4-1. UV-Vis absorption spectra of P1 – P3 in dilute chloroform solutions. 
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Figure 4-2. UV-Vis absorption spectra of P1 – P3 as thin films. Thin films were spun from polymer 

solutions in 1:1 (v/v) CHCl3:oDCB (2 mg/mL). 

Table 4-2. Electronic and optical properties of benzobisazole-thiophene-dithienosilole terpolymers. 

Polymer 

Solution Film 

𝜆"#$%&'(  

(nm) 

𝜆"#$
-.'" 

(nm) 

λonset 

(nm) 

𝐸0
&12(eV)a 𝐸034(eV)b 𝐸&(%52&$  𝐸&(%52657  

LUMO 

(eV)c 

HOMO 

(eV)d 

P1 522 524 610 2.0 2.2 0.4 -1.8 -3.0 -5.2 

P2 505 536 640 1.9 2.0 0.4 -1.6 -3.2 -5.2 

P3 520 549 650 1.9 -- 0.5 --- --- -5.2 

a Estimated from the optical absorption edge. b Estimated from HOMO-LUMO. c LUMO = -4.8- (Ered
onset) (eV). d HOMO = -4.8- 

(Eox
onset) (eV). Electrochemical properties were measured using a three-electrode cell (electrolyte: 0.1 mol/L TBAPF6 in 

acetonitrile) with an Ag/Ag+ reference electrode, a platinum auxiliary electrode, and a platinum button electrode as the working 

electrode. Reported values are referenced to Fc/Fc+. Polymer films were drop cast on to the working electrode from an o-DCB 

solution of P1 – P3. No reduction peak was seen for P3. 
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As expected, these band-gaps are slightly narrower than those reported previously for the 

benzobisazole-quarterthiophene system which ranged from 2.1 eV – 2.2 eV.33 This further 

demonstrates that using a stronger fused electron-donating comonomer was beneficial in 

narrowing the band gap.  

Using cyclic voltammetry, the electrochemical properties of the polymers were evaluated and 

the results are summarized in Table 2. P1 and P2 showed reproducible oxidation and reduction 

processes, whereas P3 only showed a clear wave during the oxidation cycle. The HOMO levels 

were all ranged from -5.2 to -5.3 eV and were estimated using the absolute energy level of 

ferrocene/ferrocenium (Fc/Fc+) as 4.8 eV under vacuum and the onsets of oxidation.42 These are 

deep enough to provide good air stability.15 Similarly, the LUMO levels of -3.0 eV and -3.2 eV 

were estimated using the onsets of reduction for the BBO polymers P1 and P2, respectively. The 

trans-BBZT polymer P3 did not exhibit a measurable reduction wave. These results indicate that 

the HOMO level of these polymers are unaffected by changing the configuration of the oxygen 

atoms or replacing them with sulphur. In contrast, switching the oxygen from the cis- to the 

trans- configuration reduced the LUMO level by ~0.2 eV. The LUMO levels for all of the 

polymers are also lower than those of their quarterthiophene counterparts.33 Thus replacing the 

bithiophene with DTS was beneficial. The difference between the electrochemical band gaps of 

P1 and P2 and their optical band gaps is typical for these measurements due to the energy barrier 

associated with the interface of the polymer film and the electrode surface.42, 43 

4.3.2 Photovoltaic Properties 

The OPV performances of the polymers was evaluated using photovoltaic devices with a 

configuration of ITO/PEDOT:PSS/Polymer:PC71BM/Ca/Al and a 1:2 weight ratio of polymer to 
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PC71BM with a total solution concentration of 21 mg/mL. These devices were evaluated with 

and without the solvent additive, DIO. The photovoltaic parameters including short circuit 

current density (JSC), open circuit voltage (VOC), fill factor (FF) and power conversion efficiency 

(PCE) are listed in Table 4-3. The current density-voltage (J-V) curves of P1:PC71BM, 

P2:PC71BM, and P3:PC71BM photovoltaic devices under AM 1.5 G illumination (100 mW/cm2) 

are shown in Figure 4-3. We were able to obtain maximum PCE values of 2.47, 3.51 and 2.15 for 

P1, P2, and P3, respectively. However, we were unable to obtain these values reproducibly in 

subsequent runs. This is indicative of the difficulty in obtaining ideal nanoscale morphology 

within the polymer:fullerene blends. On average the devices based on the benzobisoxazole 

polymers P1 and P2 had similar performance with PCEs of ~1.5 % without the use of solvent 

additives. Whereas, the performance of the devices made from the benzobisthiazole polymer P3 

were slightly lower with a PCEs of 1.22 %. We also evaluated the use of DIO as a solvent 

additive,44  

 

Figure 4-3. Current density-voltage (J-V) curves of polymer:PC71BM, photovoltaic devices 

under AM 1.5 G illumination (100 mW cm-2). 
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Figure 4-4. The external quantum efficiency of polymer:PC71BM, photovoltaic devices under AM 1.5 G 

illumination (100 mW cm-2). 

but only observed a nominal improvement in the PCE for P3, and a minor decrease in the 

performance of P1 and P2. In general, the performances of these devices were modest as a result 

of both JSC and VOC and moderate FF. The external quantum efficiency (EQE) curves for the best 

devices are shown in Figure 4. All of the devices had broad photoresponses between 400 to 690 

nm, with a maximum EQE of 79% at 400nm, 83% at 400nm, and 73% at 400nm, for P1, P2, and 

P3, respectively. These overall performance of these polymers represent a modest improvement 

over our previously results on poly(quarterthiophene benzobisazoles), in which the best 

performance was a PCE of 1.14 % for the trans-BBO polymer.33 The OPV performance of P3 is 

comparable to that reported by Jenekhe et al for a related benzobisthiazole polymer, poly[( 4,4’ -

bis( 2- ethylhexyl)dithieno[ 3,2-b:2’ ,3’ -d]silole)-2,6-diyl-alt- (2,5-bis(3-dodecylthiophen-2-

yl)benzo[1,2-d;4,5-d’]bisthiazole)] (PBTEHS), which had a PCE of 1.24 % that increased to 2.02 

% with the use of additives.32 Although PBTEHS and P3 have different substituents on both the 

flanking thiophenes and benzodithiophene, the  
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Table 4-3. Photovoltaic device performance of P1 - P3 with PC71BM. 

Polymer 
Additive 

(% DIO) 

JSC 

(mA/cm2) 
VOC (V) FF PCE (%) 

Max PCE 

(%) 

RSH 

(Ω cm2) 

P1 None 8.07±5.89 0.69±0.03 0.40±0.05 2.01±1.00 3.51 457±259 

P1 0.5 3.14±0.07 0.69±0.02 0.49±0.02 1.08±0.02 1.11 1,656±127 

P1 2.5 4.00±0.21 0.65±0.05 0.46±0.01 1.20±0.20 1.34 982±134 

P2 None 5.13±1.49 0.71±0.01 0.46±0.04 1.67±0.44 2.57 818±209 

P2 0.5 4.47±0.07 0.71±0.01 0.46±0.01 1.43±0.03 1.45 792±34 

P2 2.5 4.80±0.04 0.69±0.01 0.42±0.01 1.39±0.02 1.42 708±37 

P3 None 5.27±3.11 0.66±0.01 0.44±0.08 1.44±0.48 2.15 944±455 

P3 0.5 3.78±0.13 0.68±0.02 0.46±0.01 1.17±0.03 1.21 970±40 

P3 2.5 4.23±0.15 0.67±0.01 0.43±0.01 1.22±0.03 1.25 835±146 

Photovoltaic devices with a configuration of ITO/PEDOT:PSS/Polymer:PC71BM/Ca/Al were fabricated at a 1:2 weight ratio of 

polymer to PC71BM and a total solution concentration of 21mg /mL. DIO was used as the additive (% v/v). 

 

similarities in their initial performance but different behavior upon the addition of the co- 

solvents suggest that the polymers’ structure has a negative impact on the morphology of the 

blends thin film.  

The hole mobilities of the polymers were examined using the space-charge-limited current 

(SCLC) method with a hole only device structure of ITO/PEDOT:PSS/Polymer/Al and are 

summarized in Table 4-4.45 The mobilites were calculated according to equation 4-1: 
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JSCLC = 89𝟎;<=>?
@

ABC
    (4-1) 

in which ε0εr is the permittivity of the polymer, µh is the carrier mobility, and L is the device 

thickness.46 The mobilities of the polymers were on the same order of magnitude as each other, 

with P3 having the lowest mobility. This is consistent with the OPV data, with P3 giving the 

worst performance, by only by a small margin.  

4.3.3 Film Morphology 

The surface roughness and phase distribution of the three polymer systems were studied by 

atomic force microscopy (AFM) (Figure 4-5). The AFM height images reveal smooth 

topography for all three polymers with root-mean square (RMS) surface roughness values less 

than 1.30 nm (Table 4-4). In the phase images, P1:PC71BM and P2:PC71BM thin-films show a 

bi-phasic distribution. However, the phase image of P3:PC71BM thin film is notably different 

and shows a strong vertical phase separation, which hampers both exciton dissociation and 

charge transport, and explains the poorest performance of the P3 based devices. It is known that 

the BBZT containing polymers have poorer solubility than the BBO based ones.29, 33 The reduced 

solubility of P3 relative to P1 and P2 strongly affects the polymer/fullerene intermixing, and 

potentially increases tendency for aggregation. 
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Table 4-4. Mobility of P1 - P3 hole-only devices and AFM data of polymer: PC71BM blends. 

Polymer 
µh 

(cm2 V-1 s-1) 
RMS Roughness (nm) 

P1 8.04E-06 1.08 

P2 5.06E-06 0.97 

P3 2.34E-06 1.30 

 

 

 

 

 

FIGURE 4-5. AFM height (left) and phase (right) images at 3 µm x 3 µm of devices with 

polymer:PC71BM blends at a 1:2 weight ratio. From top to bottom: P1:PC71BM, P2:PC71BM and 

P3:PC71BM 
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The surface morphology of the P1:PC71BM  and P2:PC71BM thin films with varying 

amounts of DIO (0, 0.5 and 2.5 vol %) was also investigated by AFM (Figure 6). The RMS 

surface roughness values of the films with 0.5 vol % (1.86 nm for P1 and 2.05 nm for P2) and 

2.5 vol % (2.12 nm for P1 and 1.56 nm for P2) DIO additives were larger than the films 

processed without any additives (0.47 nm for P1 and 0.48 nm for P2). On the other hand, AFM 

phase images of the DIO-treated thin films display larger domain sizes, which indicate the 

existence of large polymer aggregates. This suppresses the exciton dissociation, short-circuit-

current, and consequently the power conversion efficiency of the DIO-treated devices (Table 4-

3). While the role of the solvent additive generally is to facilitate the crystallization of the 

polymer around the fullerene,47 in the case of these polymers the large aggregates obtained are 

not favorable. In the future, different solvent additives will be investigated to further optimize the 

OPV performance of polybenzobisazoles-based solar cells. 
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FIGURE 4-6. AFM height (first and third column) and phase (second and fourth 

column) of P1:PC71BM blends and P2:PC71BM blends, respectively. Images at 3 µm x 3 

µm of devices with a 1:2 weight ratio. From top to bottom: control. 0.5% DIO and 2.5% 

DIO 

 

4.4 Conclusions 

In summary, a series of donor-acceptor copolymers based on dithienylbenzobisazole and 

dithieno[3,2-b:2’ ,3’ -d]silole were synthesized in an effort to improve the OPV 

performance of benzobisazole polymers. Although the polymers differed in the location 

and/or nature of the heteroatoms within the benzobisazole moiety they had identical 
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HOMO levels (- 5.2 eV) and fairly similar LUMO levels (-3.0 to 3.2 eV). The use of the 

DTS monomer had only a moderate effect on the band gap of these polymers.  However, 

these materials did outperform our previously reported benzobisazoles. Furthermore our 

data indicates that among this series, benzobisoxazole based polymers are the most 

promising due to improved solubility and thin film formation. Research is ongoing in our 

lab to further improve upon the properties of this class of polymers. 

4.5 Supporting Information 

4.S.1 Device Fabrication and Characterization. 

All polymers were mixed with PC71BM (mixed at a 1:2 weight ratio with a total solution 

concentration of 21mg/mL) then dissolved in o-dichlorobenzene and stirred at 90 °C for 

48 hours. ITO-coated glass substrates were cleaned sequentially by ultrasonication in 

MucasolTM detergent (dissolved in deionized water), deionized water, acetone and 

acetone. The slides were dried in an oven for at least three hours followed by O2 plasma 

exposure for 10 minutes. Filtered (0.45 µm) PEDOT:PSS  was then spin-coated onto the 

prepared substrates (2000 rpm/60 s). The PEDOT:PSS films were then annealed at 150 

°C for 30 minutes. The thickness of PEDOT:PSS layer was approximately 40 nm. The 

PEDOT:PSS films were then transferred to an argon-filled glovebox. After 48 hours of 

mixing, the polymer:PCBM solutions were filtered (0.45 µm) and immediately dropped 

onto the PEDOT:PSS coated-coated substrates and spincast at 1000 rpm for 120 seconds. 

Photovoltaic devices with a configuration of ITO/PEDOT:PSS/ Polymer:PC71BM/Ca/Al 

were fabricated. These devices were evaluated with and without the solvent additive, 1,8-

diiodooctane (DIO). A cathode was prepared by sequentially depositing a Ca film (20 

nm) and an Al film (100 nm) through a shadow mask. The photovoltaic devices had an 
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area of 0. 06 cm2 and were tested under simulated AM 1.5 G irradiation (100 mWcm-2, 

calibrated with Daystar Meter) using a SoLux Solar Simulator, and the current-voltage (I-

V) curves were measured using a Keithley 2400 multisource meter. A Veeco Digital 

Instruments atomic force microscope (AFM) was used to map the surface profile of the 

investigated thin films. Both the surface roughness and phase images were captured 

simultaneously at scan rate and size of 0.5 Hz and 3µm × 3µm, respectively. The images 

were analyzed using Nanotec Electronica WSxM software.40 
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5.1 Abstract 

In an effort to design efficient low cost polymers for use in organic photovoltaic cells the 

easily prepared donor-acceptor-donor triad of a either cis-benzobisoxazole, trans-

benzobisoxazole or trans-benzobisthiazole flanked by two thiophene rings was combined with 

the electron-rich 4,8-bis(5-(2-ethylhexyl)--thien-2-yl)-benzo[1,2-b:4,5-b’]dithiophene. The 

electrochemical, optical, morphological, charge transport and photovoltaic properties of the 

resulting terpolymers were investigated. Although the polymers differed in the arrangement 

and/or nature of the chalcogens, they all had similar HOMO energy levels (-5.2 to -5.3 eV) and 

optical band gaps (2.1 to 2.2 eV). However, the LUMO energy levels ranged from - 3.1 to -3.5 

eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices 

with PC71BM ([6,6]-phenyl C71-butyric acid methyl ester) as the acceptor, the trans-

benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8 %.  

5.2 Introduction 

Organic photovoltaic cells (OPVs) continue to garner a large amount of interest due to 

their potential for use in the development of lightweight and large area panels for efficient solar 

energy conversion. Currently, the most efficient OPVs are based on the bulk-heterojunction 

concept in which an electron accepting material, such as a functionalized fullerene, is blended 

with an electron donating conjugated polymer.1 Achieving high power conversion efficiency 

(PCE) in these systems requires concurrent optimization of several parameters including the 

nanoscale morphology of the polymer film formed upon blending with the donor conjugated 

polymers the fullerene acceptor and the alignment of energy levels of these two components.2 In 

an effort to optimize the properties of the donor polymers, there has been extensive research on 
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the design and synthesis of new materials. A popular approach is the synthesis of polymers 

composed of alternating electron rich and electron poor moieties as the intramolecular charge 

transfer (ICT) between these groups can be modified by adjusting the strength of the two 

monomers, thereby enabling tuning of the polymer’s highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) levels.3-5 Although there are many 

known donor-acceptor conjugated polymers, only a few combinations have resulted in high 

PCEs. Moreover, many of these polymers utilize complex heterocycles that are challenging to 

synthesize and purify on large scale.2, 6, 7 

Accordingly, benzo[1,2-d;5,4-d']bisoxazole (cis-BBO), benzo[1,2-d;4,5-d']bisoxazole 

(trans-BBO), and benzo[1,2-d;4,5-d']bisthiazole (trans-BBZT), are particularly promising for the 

development low-cost solution processible OPVs. Collectively referred to as the benzobisazoles, 

these electron deficient heterocycles are present in a variety of materials including high 

performance rigid-rod polymers,8-10 non-linear optical materials,11 emissive polymers for use in 

organic light emitting diodes,12-17 electron transporting layers,18 field-effect transistors 

(OFET)s,19-22 and OPVs.21, 23-28 Benzobisazoles have planar conjugated structure that facilitates 

π−π stacking, improving charge carrier mobility.18, 22 Additionally, polybenzobisazoles are 

among some of the most thermally and environmentally stable materials known, which is 

benefical for long term device stability.8-10 As a result of their origins as high performance 

materials, the monomers required for the synthesis of benzobisazoles can be prepared in large 

quantities, and purified without the use of column chromatography, making scale-up feasible.8, 9, 

29 Historically, the use of polybenzobisazoles was hampered by their poor solubility and the 

harsh conditions used for their synthesis. However, new synthetic methods have enabled the 

development of solution processable polybenzobisazoles.17, 21, 23 
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 Previously, we reported the synthesis and photovoltaic properties of copolymers 

comprising a donor-acceptor-donor tri triad of a benzobisazole flanked by two thiophene rings 

and 3,3’-dioctylbithiophene.25 These copolymers exhibited hole mobilities as high as 4.9 x 10-

3cm2V-1s-1 when used in OFETs and modest PCEs up to 1.14%, with the trans-BBO polymer 

giving the best performance in both devices. In an effort to improve upon the performance of 

these polymers we replaced the bithiophenes with benzo[1,2-b:4,5-b′]dithiophene (BDT). This 

electron rich building block has a planar structure that facilitates π−π stacking thus improving 

hole mobility.30-34 As a result, there are several copolymers comprised of BDT and various 

electron-deficient moieties with reported PCEs approaching the 10% PCE sought after for 

commercial viability.35-40 In this work, we have utilized the two dimensional donor moiety 4,8-

bis(5-(2-ethylhexyl)thien-2-yl)-benzo[1,2-b:4,5-b’]dithiophene. Replacing the electron rich 

alkoxy-side chains with thiophene rings lowers the HOMO level of the resulting polymers, while 

the extended conjugation created by the flanking thiophene rings increases absorption. As a 

result, polymers made from thiophene substituted BDTs often have better OPV performance than 

their alkoxy substituted analogs.41, 42  This selection proved to be advantegous as when the 

polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM 

as the acceptor, the trans-benzobisoxazole polymer had the best performance with a PCE of 

2.8%. This nearly a three-fold increase over the previously reported devices based on the 

bithiophene comonomers,25 and rivals the performance of our copolymers with dithienylsilole.43 
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5.3 Results and Discussion 

5.3.1 Synthesis and physical characterization 

The synthesis of the polymers is shown in Scheme 1. The required monomers 4,8-bis(5-

(2-ethylhexyl) thien-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene 1,44 2,6-bis(4-octylthiophen-2-yl)-

benzo[1,2-d; 5,4-dʹ]bisoxazole 2,17 2,6-bis(4-octylthiophen-2-yl)-benzo[1,2-d; 4,5-d']bisoxazole 

3,17 and 2,6-bis(4-octylthiophen-2-yl)-benzo[1,2-d; 4,5-d']bisthiazole 417 were synthesized 

according to the literature procedure. The use of the thiophene-benzobisazole-thiophene triad 

prevents ring opening side reactions at the 2- and 6-positions of the benzobisazole ring during 

the cross-coupling reaction.45 The Stille cross-coupling polymerization of monomer 1 with 2, 3, 

or 4 with afforded polymers P1, P2 and P3 respectively in yields ranging from 60 – 76% 

(Scheme 5-1). All polymers had limited solubility in common organic solvents, such as THF, 

and chloroform at room temperature, preventing characterization via NMR spectroscopy. 

However, characterization via gel permeation chromatography (GPC) was possible. The reported 

molecular weight of P3 appears to be half that of P1 and P2 due to the reduced solubility of the 

sulfur containing polymer. We also believe that the limited solubility of P3 has impeded its 

analysis as only the fraction soluble  
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Scheme 5-1. Synthesis of benzodithiophene-thiophene-benzobisazole copolymers. 

in chloroform at room temperature was evaluated. Nonetheless, all of the polymers showed 

excellent film-forming abilities. Thermogravimetric analysis (TGA) revealed that all polymers 

were thermally stable with 5% weight loss onsets occurring above 240 °C under air. The results 

are summarized in Table 1. 

Table 5-1. Physical characterization of P1 – P3. 

Polymer Yield

a (%) 

Mn
b 

(kDa) 

Đb DPn Td (ºC)c 

P1 76 15.9 1.9 17 387 

P2 71 10.9 2.1 12 246 

P3 60 5.3 1.5 4 250 

a Isolated yield bDetermined by GPC in CHCl3 using polystyrene standards. c 5% weight loss temperature by TGA in 

air. 
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5.3.2 Optical and electrochemical Properties. 

The normalized absorbance spectra of the polymer solutions in chloroform and in the 

solid state are shown in Figure 1 and 2, respectively, and the data is summarized in Table 2. In 

solution the UV-Visible spectrum for P2 has a single, featureless absorbance band, whereas 

vibronic coupling is seen in the spectra of P1 and P3. The absorption maximum for P2 is 

hypsochromically shifted 26 nm relative to the absorbance maximum for its isomer, P1, whereas 

the absorption maximum of P3 is red-shifted 87 nm relative to the isoelectronic P2. All of the 

spectra are fairly broad and lack a second low-energy absorption seen when intermolecular 

charge transfer between the electron donating and electron accepting units is occuring.5 As thin 

films, the absorbance maximum for all of the polymers are bathochromically shifted indicating 

increased backbone planarization and π-stacking in the solid state.46 Interestingly, the absorbance 

maxima of P1 and P2 in thin film are significantly red-shifted relative to their solution spectra, 

while the absorbance maxima of P3 is only slightly red-shifted relative to its solution spectra. 

The difference is likely a result of the lower molecular weight of P3. Despite the lower 

molecular weight of the polymer, P3 exhibited the most red-shifted absorbance maximum of the 

series. Overall, the absorption maxima for these polymers is also red-shifted relative to the 

analogous quarter thiophene benzobisazoles, which had absorption maxima of 460, 475, and 462 

nm for the cis-BBO, trans-BBO, and trans-BBZT polymers, respectively and similar molecular 

weights.25 Although the optical band gaps for both series of polymers were similar, the red-

shifted absorption in this series of polymers is beneficial in improving the photovoltaic 

properties of the polymers. 
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The electrochemical properties of the polymers were evaluated by cyclic voltammetry. 

All three polymers exhibit measureable and reproducible oxidation and reduction processes . The 

HOMO and LUMO levels were estimated from the onset of oxidation and reduction using the 

absolute energy level of ferrocene/ferrocenium (Fc/Fc+) as -4.8 eV under vacuum and are 

summarized in Table 2.47 The HOMO levels ranged from -5.2 to -5.3 eV, all of which are deep 

enough to guarantee good air stability.48 The LUMO levels ranged from -3.1 to -3.5 eV, with the 

trans-BBZT being the lowest. As a result, P3 had the smallest electrochemical band gap of the 

series. The electrochemical band gaps for P1 and P2 are both similar to their optical band gaps, 

whereas the electrochemical band gap of P3 is significantly smaller than its optical band gap. We 

note that the current of the cyclic voltammogram of P3 is also smaller than that of the other 

polymers which could be a result of difference in the morphology of the polymer film on the 

electrodes surface among other issues.47 This data demonstrates that changing the position of the 

oxygen atoms from the cis- configuration to the trans- configuration has a negligible impact on 

the HOMO level and a negligible impact on the LUMO level. However, replacing the oxygen 

atoms of trans-BBO with sulfur had a negligible impact on the HOMO level, while reducing the 

LUMO level by ~0.3 eV. As a result the benzobisthiazole polymer has the smallest 

electrochemical bandgap.  
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Figure 5-1. UV-Vis absorption spectra of P1 – P3 in dilute chloroform solutions. 

 

 

Figure 5-2. UV-Vis absorption spectra of P1 – P3 as thin films spun from polymer solutions in 

oDCB (2 mg/mL). 
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Table 5-2. Electronic and optical properties of benzobisazole-thiophene-dithienosilole 

terpolymers. 

Polyme

r 

Solution Film 

𝜆"#$%&'(  

(nm) 

𝜆"#$
-.'" 

(nm) 

λonset 

(nm) 

𝐸0
&12 

(eV)a 

𝐸034  

(eV)b 
𝐸&(%52&$  𝐸&(%52657  

HOMO 

(eV)c 

LUMO 

(eV)d 

P1 451 490 565 2.2 2.1 0.42 -1.70 -5.2 -3.1 

P2 425 487 575 2.2 2.1 0.46 -1.59 -5.3 -3.2 

P3 513 518 600 2.1 1.7 0.35 -1.35 -5.2 -3.5 

a Estimated from the optical absorption edge. b Estimated from HOMO - LUMO c HOMO = -4.8 - (Eox
onset) (eV). d 

LUMO = -4.8 - (Ered
onset) (eV). Electrochemical properties were measured using a three-electrode cell (electrolyte: 

0.1 mol/L TBAPF6 in acetonitrile) with an Ag/Ag+ reference electrode, a platinum auxiliary electrode, and a 

platinum-button working electrode. Reported values are referenced to Fc/Fc+. Polymer films were drop cast from an 

ortho-dichlorobenzene (oDCB) solution of the polymers on to the working electrode. All cyclic voltammetry 

experiments were recorded at a scan rate of 50 mV/s.  
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 Previously, we were able to evaluate the energy levels using both CV and 

ultraviolet photoelectron spectroscopy (UPS) and saw good correlation between both 

measurements. UPS provides a more accurate values for the HOMO level than CV.49 

Based on the UPS measurements switching the orientation of oxygen within 

benzobisoxzole from cis to trans lowered the HOMO level by 0.1 eV, and substituting 

the oxygen atoms in trans-BBO with sulfur atoms had no effect on the HOMO level. 

Conversely, switching the orientation within benzobisoxzole from cis to trans lowered 

the LUMO level by 0.1 eV, whereas replacing the oxygen atoms in trans-BBO with 

sulfur atoms raised the LUMO level by 0.1 eV. The LUMO levels of P1 and P2 are both 

0.2 eV lower that those reported previously for the analogous quarterthiophene 

benzobisoxazole polymers (-2.9 eV) and the HOMO levels are both 0.1 eV higher (-5.3 

and -5.4 eV).25 However, P3 has a significantly lower LUMO level than its 

quarterthiophene analog (-3.1 eV) and the HOMO level is 0.2 eV higher (-5.4 eV).25  

5.3.3 Evaluation of Charge Carrier Mobility and Photovoltaic Properties. 

The performance of all three polymers in OPVs were evaluated using PC71BM as the 

electron acceptor with a device configuration of 

ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al. Photovoltaic devices with this configuration 

were fabricated using different  polymer:PC71BM weight ratios and are summarized in 

Table S1. The active layer was deposited from 21 mg/mL o-DCB solutions, using 

processing conditions selected to give a thickness of approximately 100 nm. In all cases 

the best performance was obtained using a 1:2.5 weight ratio of polymer to PC71BM. The 

current density-voltage (J-V) curves of P1:PC71BM, P2:PC71BM, and P3:PC71BM 

photovoltaic devices at this weight ratio under AM 1.5 G illumination (100 mW cm-2) are 
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shown in Figure 5-3. These devices were evaluated with and without the solvent additive, 

1,8-diiodooctane (DIO). The resulting photovoltaic performances including short circuit 

current density (JSC), open circuit voltage (VOC), fill factor (FF), and PCE are shown in 

Table 5-3. The external quantum efficiencies (EQEs) of the solar cell devices were also 

examined. The EQE curves for the solar cells fabricated under the same conditions used 

for the J–V measurements are shown in Figure 5-S1. The trend in the EQE values is 

consistent with the observed performance for the cells. Overall, the devices based on P2 

gave the highest PCE at 2.78% without the use of solvent additives. The devices made 

from P1 and P3 had lower efficiencies with values of 1.75% and 1.62%, respectively. 

Although all of the polymers had similar VOC and FF, P2 had the highest photocurrent, 

and as a result, the highest PCE. This is almost a three-fold improvement over the 

previously reported poly(quarterthiophene benzobisoxazole).25 Interestingly, the P1- and 

P3-based devices had similar performances with respective values of 1.85% and 1.62%, 

despite the significantly lower molecular weight of P3, which can negatively affect film 

formation and charge carrier mobility.50, 51 The OPV performance of P3 is comparable to 

that reported by Jenekhe et al. for a related benzobisthiazole polymer, poly[(4,8-bis(2-

hexyldecyl)oxy)benzo[1,2-b:4,5-b’]dithiophene)-2,6-diyl-alt-(2,5-bis(3-dodecylthiophen-

2-yl)benzo[1,2-d;4,5-d’]bisthiazole)] (PBTHDDT), which had a PCE of 1.76%, that 

improved to 2.96% with the use of additives.23 We also evaluated the use of DIO as a 

solvent additive,52 but only observed a nominal improvement in the PCE for P1, and a 

decrease in the performance of P2 and P3. However, PBTHDDT differs from our 

polymer in the placement and nature of the substituents on both the thiophenes and 
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benzodithiophene. This suggests that additional optimization of our system could yield an 

even higher PCE. 

The mobilities were calculated according to equation 1: The hole mobility of the 

polymers was examined using the space-charge-limited current (SCLC) method with a 

hole only device structure of ITO/PEDOT:PSS/Polymer/Al.53 The mobilities were 

calculated according to the equation 1: 

JSCLC = 89𝟎;<=>?
@

ABC
    (1) 

 

where ε0εr is the permittivity of the polymer, µh is the carrier mobility, and L is the device 

thickness.54 The hole mobilities were determined to be 2.19 x 10-5, 2.18 x 10-5, and 6.58 x 

10-5 cm2V-1s-1 for P1, P2, and P3, respectively. These values are all of the same order of 

magnitude indicating that the difference in the PCE of the polymers is not a function of 

their charge carrier mobility.  

The surface roughness and phase distribution of the three polymer systems were 

studied by atomic force microscopy (AFM) (Figure 5-4). The AFM height images 

revealed that both the P1:PC71BM and P2:PC71BM blend films have large domain sizes, 

manifesting root-mean square surface roughness (RMS) values of 2.94 nm and 1.20 nm, 

respectively. Whereas, the P3:PC71BM blend film has smaller domains (RMS = 0.78 

nm). The AFM phase images of P2:PC71BM film displays a refined morphology that 

improves the exciton dissociation efficiency and, thus, the PCE. Conversely, films of the 

P1:PC71BM and P3:PC71BM blend show poor intermixing between polymer and 
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fullerene, reducing overall efficiency. Our previous X-ray diffraction studies on 

poly(quarter thiophene benzobisazoles) indicate that the structural differences in the 

materials do not significantly impact the packing of the polymer chains.25 Therefore, the 

differences in the morphology of these polymers are likely a result of differences in 

solubility. As Figure 5-S2-5-S4 show, the AFM surface roughness and phase images of 

the three polymer systems were captured at 0.5 and 2.5% DIO additives. The RMS values 

of the films topography (shown in Figure 5-S5) indicate that the DIO additive increases 

the film roughness and the polymer/fullerene phase separation as depicted in the phase 

images of Figure 5-S2-S4. This is true for P1- and P2-based thin films. Whereas, 

P3:PC71BM thin film that showed slight increase in the domain sizes of polymer and 

fullerene. The observed phase separation with DIO additive hampers the charge 

dissociation efficiency and, thus, the photovoltaic characteristics (Table 5-3). It is worth 

mentioning that The P2:PCBM thin films show an RMS increase from 0.91 nm for the 

control (no additive) to 1.75 nm and 2.54 nm for the 0.5 and 2.5% of DIO additives, 

respectively.  
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Figure 5-3. Current density-voltage (J-V) curves of polymer:PC71BM, photovoltaic 

devices under AM 1.5 G illumination (100 mW cm-2). 
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Table 5-3. Photovoltaic device performance of P1 - P3 with PC71BM. 

Polymer 
Additive 

(% DIO) 

JSC 

(mA/cm2) 
VOC (V) FF PCE (%) 

Max PCE 

(%) 

RSH 

(Ω cm2) 

P1 None 4.05±0.15 0.79±0.01 0.53±0.0 1.71±0.03 1.75 457±259 

P1 0.5 %  3.99±0.05 0.70±0.00 0.56±0.0 1.57±0.04 1.61 1,656±127 

P1 2.5 % 4.52±0.14 0.76±0.02 0.53±0.1 1.78±0.07 1.85 982±134 

P2 None 7.81±0.18 0.72±0.01 0.49±0.0 2.74±0.05 2.78 818±209 

P2 0.5 %  3.31±0.21 0.59±0.01 0.43±0.0 0.87±0.07 0.94 792±34 

P2 2.5 %  3.74±0.00 0.55±0.02 0.37±0.0 0.76±0.04 0.79 708±37 

P3 None 3.79±0.08 0.76±0.01 0.55±0.0 1.58±0.04 1.62 944±455 

P3 0.5 %  4.26±0.08 0.69±0.02 0.51±0.2 1.50±0.00 1.50 970±40 

P3 2.5 %  4.60±0.04 0.68±0.01 0.48±0.0 1.53±0.03 1.54 835±146 

Photovoltaic devices with a configuration of ITO/PEDOT:PSS/Polymer:PC71BM/Ca/Al were fabricated at a 1:2.5 

weight ratio of polymer to PC71BM and a total solution concentration of 21 mg mL-1. DIO was used as the additive (% 

v/v). Averages are based on 6 devices. 

 

This strongly affects the P2:PC71BM intermixing, revealing average (max) PCEs of 2.54 

(2.78), 0.87 (0.94) and 0.74 (0.79) % for the control, 0.5 and 2.5% DIO additives, 

respectively (Figure 5-S5). 
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Table 5-4. Hole mobility of P1-P3 hole only devices, and AFM data of polymer: 

PC71BM blends. 

Polymer µh 

(cm2 V-1 s-1) 

RMS Roughness (nm) 

P1 2.19 x 10-5 2.94 

P2 2.18 x 10-5 1.20 

P3 6.58 x 10-5 0.78 
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Figure 5-4. AFM height (left) and phase (right) images at 3 µm x 3 µm of devices with 

polymer:PC71BM blends at a 1:2.5 weight ratio. From top to bottom: P1:PC71BM, 

P2:PC71BM and P3:PC71BM. 

 

5.4 Conclusions 

Three terpolymers composed of thiophene, benzodithiophene and benzobisazoles were 

prepared in an effort to develop efficient materials for use in photovoltaic cells. The 

benzobisoxazole polymers had good solubility in various organic solvents, whereas the 

trans-benzobisthiazole polymer had limited solubility preventing the synthesis of high 

molecular weight polymer. All of the polymers had similar HOMO levels, but different 

LUMO levels and fairly wide band gaps. The trans-benzobisthiazole polymer, P3, 
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exhibited slightly broader and red-shifted absorption spectra relative to the other 

benzobisazoles in the solid state. Furthermore, this polymer also had the highest hole 

mobility of all three polymers. However, these properties did not translate into better 

performance in OPVs as the polymer based on trans-benzobisoxazole gave the best 

performance of the series at 2.78%. The poor performance of the trans-benzobisthiazole 

polymer is likely a result of the negative impact the molecular weight has on the active 

layer film morphology. At the same time the OPV performance of all these polymers is 

limited due to the wide band gap and relatively high-lying HOMO level. Given the 

overall ease of synthesis, benzobisazoles are still promising building blocks for the 

development of OPV materials. However, additional improvements in solubility, 

processing and electronic properties are needed. Accordingly, we are actively pursuing 

the synthesis of new derivatives to address the wide band gap and processability of the 

polymers. 

 
 
 
5.5 Supporting Information 

5.S.1 Device Fabrication and Characterization. 

All devices were produced via a solution-based, spin-casting fabrication process. All 

polymers were mixed with PC71BM (SES Research) (mixed 1:2.5 (w/w) with a total 

solution concentration of 21 mg mL-1) then dissolved in o-dichlorobenzene and stirred at 

90 °C for 48 hours. ITO (20 – 25.2 Ω) coated glass slides (Delta Technologies) were 

cleaned by consecutive 10 minute sonications in (i) MucasolTM detergent (dissolved in 

deionized water), 2x, (ii) deionized water, (iii) acetone, and then (iv) isopropanol. The 
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slides were then dried in an oven for at least 3 hours and cleaned with air plasma (Harrick 

Scientific plasma cleaner) for 10 minutes. Filtered (0.45 µm) PEDOT:PSS (Clevios PTM) 

was spin-coated onto the prepared substrates (2000 rpm/60 sec) after first  being stirred 

for 10 minutes at room temperature. The PEDOT:PSS films were annealed at 150 °C for 

30 minutes air and  transferred to an nitrogen-filled glovebox after cooling. After 48 

hours of mixing, the polymer:PC71BM solutions were filtered (0.45 µm pore, GS-Tek) 

and simultaneously dropped onto the PEDOT:PSS-coated substrates and spin-cast at 

1000 rpm for 60 seconds. The films were dried under vacuum overnight.  Ca (20 nm) and 

Al (100 nm) were successively thermally evaporated through a shadow mask (area = 0.06 

cm-2) under vacuum of 10-6 mbar to complete the devices. J-V data was generated by 

illuminating the devices using an ETH quartzline lamp at 1 sun (calibrated using a 

crystalline silicon photodiode with a KG-5 filter). The hole mobility was extracted from 

the SCLC measurement using keithley 2400 source/meter in the dark under ambient 

condition.  
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5.S.2 Atomic force microscopy.  

All measurements were performed on films cast as described above; electrodes were not 

attached to these samples. A Veeco Digital Instruments atomic force microscope was 

used to perform the analysis. The tapping-mode AFM was carried out using TESPA tip 

with scan rate of 0.5 µm sec-1 and scan size of 3 µm x 3 µm. 

	

Figure 5-S1: EQE plots of P1 – P3 for photovoltaic devices with a configuration of 

ITO/PEDOT:PSS/Polymer:PC71BM/Ca/Al were fabricated at a 1:2.5 weight ratio of 

polymer to PC71BM and a total solution concentration of 21mg /mL. 
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Table	5-S1:	Photovoltaic performance of polymers P1 – P3 using different 

polymer:PC71BM blends 

Polymer Polymer:PC71BM 
Ratio 

VOC (V) JSC (mA 
cm-2) 

FF PCE 
(%) 

P1 1:1.5 0.769 3.53 0.55 1.50 

 1:2 0.790 3.54 0.54 1.51 

 1:2.5 0.776 4.20 0.54 1.75 

P2 1:1.5 0.619 4.10 0.41 1.03 

 1:2 0.703 3.75 0.48 1.27 

 1:2.5 0.715 7.95 0.49 2.78 

P3 1:1.5 0.741 3.20 0.55 1.3 

 1:2 0.735 3.58 0.56 1.50 

 1:2.5 0.758 3.87 0.55 1.62 
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Figure 5-S2: 3 µm x 3 µm AFM images of P1:PC70BM thin films with DIO additive. 

(Left and right columns are the roughness and phase images, respectively)  
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Figure 5-S3: 3 µm x 3 µm AFM images of P2:PC70BM thin films with DIO additive. 

(Left and right columns are the roughness and phase images, respectively) 
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Figure 5-S4: 3 µm x 3 µm AFM images of P3:PC70BM thin films with DIO additive. 

(Left and right columns are the roughness and phase images, respectively) 
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Figure	5-S5:	Root-mean	square	values	extracted from the AFM roughness images of the three 

investigated polymer:PC71BM thin films. 

 

 

 

Sample 

3 µm x 3 µm 

RMS Roughness (max height) (nm) 

 

P1 

 

Control 1.21 (6.76) 

0.5% DIO 1.82 (8.77) 

2.5% DIO 2.58 (11.92) 

 

P2 

 

Control 0.91 (3.82) 

0.5% DIO 1.75 (8.57) 

2.5% DIO 2.54 (11.23) 

P3 

 

Control 1.91 (8.19) 

0.5% DIO 2.44 (10.58) 

2.5% DIO 1.51 (7.07) 
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CHAPTER 6 
	
 

CONCLUSIONS 
 
 
6.1 Dissertation Conclusions  
 
 

We were able to incorporate benzobisoxazoles into D-A polymer organic cells. 

While were able to obtain modest power conversion efficiencies and great improvements 

in solar cell performances over previous materials, there are two possible ways we can 

further improve the performance of BBO-based polymers in organic cells.   

6.2 Ongoing And Future Research 
 

6.2.1 BBOs in weak donor – strong acceptor copolymers 
 

 
Currently, our use of BBOs has been limited to acceptor moieties in D-A 

copolymers. In the literature the BBO analogue, BBZT, has been able to achieve 

maximum power conversion efficiencies of 3.83% in organic solar cells. BBO-based 

copolymers, the film state, usually have absorption maxima that are less than 560 nm. 

This, coupled with modeled HOMO/LUMO levels, strongly suggests that BBO is a weak 

acceptor. There have been reports in the literature that use BBZT as a weak donor in 

weak donor – strong acceptor copolymers for organic solar cells. This design strategy is 

expected to yield both a low bandgap and a deep HOMO level. DFT calculations have 

shown than when BBZT-type moieties are copolymerized with stronger acceptors, the 

LUMO of the resulting copolymer is localized on the stronger accepting units. It is by 

this mechanism, that BBZT is able to act as a weak donor1. Seki et al. have reported 

BBZT copolymers that have attained PCEs of 6.5% when copolymerized with the 
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electron acceptor thienyl-benzothiadiazole2, 3. In this same vein, this author proposes a 

series of copolymers based on t-BBO as a week donor (Figure 6-1). 

 

	

Figure 6-1. Proposed t-BBO polymer series 

 

The best choice of acceptor units is benzothiadiazole (1). Next in the series is 

fluorinated benzothiadiazole (2), which has been shown to be a stronger acceptor than its 

predecessor4-7. The third proposed acceptor, alkyl-5H-[1,2,5]thiadiazolo[3,4-f]isoindole-

5,7(6H)-dione (3) has been far less studied in the literature as an electron acceptor. 

However, it is expected to have better electron accepting properties because of its lower 

LUMO8-10, relative to (2). It can also be functionalized with alkyl chains, which limits the 

necessity for alkyl thiophene groups for solubility. The next acceptors (4-6) enable the 

investigation of the selenium analogs of acceptors (1-3) and would be a two-fold 

experiment to ascertain the heteroatom effect in this polymer series.  
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Figure 6-2. Proposed acceptors for D-A copolymers 

	
 

6.1.2 A BBO-based hole transporting layer 
 

 
 If tBBO is implemented as a weak donor in weak donor – strong acceptor solar 

cells, a good strategy to further improve its performance is to incorporate BBO as the 

core in an HTL. If BBO is used as the core in the backbone of the molecule, then it is 

expected that there will be a more optimal alignment of the energy levels of the solar cell 

components. There would be a better alignment of the donor, n-type material and the hole 

transport layer. This should increase ohmic contact within the solar cell and make charge 

transport more efficient.  

The active layer components are usually spincast from common organic solvents. 

Therefore, the hole transport layer, if solution processed, would have to be soluble in 

orthogonal solvents. A common way to achieve this is through the formation of 

polyelectrolytes11, 12.   
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Figure 6-3. Molecular structure of proposed t-BBO-based polyelectrolyte 

 

Figure 6-3 shows the molecular structure for a proposed polyelectrolyte based on 

the BBO core.  The synthetic route start with the CH activation reaction of 

benzobisoxazole with (2-(2-bromothiophen-3-yl)ethoxy)(tert-butyl)dimethylsilane 

(Scheme 6-1). There would be just three reactions remaining to achieve the final product 

shown in Figure 6-3. 

 

	

Scheme 6-1. Synthetic scheme to get to BBO polyelectrolyte product 
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APPENDIX 
 

LIST OF ACRONYMS AND DESCRIPTIONS 

  

Acronym    Description  

2D    Two-Dimensional  

AFM     Atomic Force Microscopy 

BBO     Benzobisoxazole 

BDF     Benzo[1,2-b:4,5-b']difuran  

BDT     Benzo[1,2-b:4,5-b']dithiophene  

BHJ     Bulk-Heterojunction  

BLA     Bond Length Alternation 

cBBO     benzo[1,2-d;5,4-d']bisoxazole 

CN     1-Chloronapthalene  

CP     Conjugated Polymer  

CV     Cyclic Voltammerty  

D-A     Donor-Acceptor 

DIO     1,8-Diiodooctane  

DP     Degree of Polymerization  

DPP     Diketopyrrolepyrrole 

DPV     Differential Pulse Voltammetry 

DSC     Differential Scanning Calorimetry  

DTS     Dithieno-[2,3-b:2’,3’-d]silole 

 Eg     Band Gap 
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Acronym    Description  

EA     Electron Affinity  

EQE     External Quantum Efficiency 

ESI     Electron-Spray Ionization 

FF     Fill Factor 

GPC     Gel Permeation Chromatography 

HMW     High Molecular Weight 

HOMO    Highest Occupied Molecular Orbital  

HWE     Horner-Wadsworth-Emmons  

HRMS    High Resolution Mass Spectrometry  

ICT     Intramolecular charge transfer 

ITO     Indium Tin Oxide  

IP     Ionization Potential  

Jsc     Short Circuit Current Density  

LMW     Low Molecular Weight  

LUMO    Lowest Unoccupied Molecular Orbital  

MMW     Medium Molecular Weight  

Mn     Number-Averaged Molecular Weight  

MO     Molecular Orbital  

Mw     Weight-Averaged Molecular Weight  

NDT    Naphtho[1,2-b:5,6-b']dithiophene  

NDF     Naphtho[1,2-b:5,6-b']difuran  
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NMR     Nuclear Magnetic Resonance  

Acronym    Description  

o-DCB    ortho-Dichlorobenzene  

OFET     Organic Field-Effect Transistor 

OLED     Organic Light-Emitting Diode  

OPV     Organic Photovoltaic Cell  

PA     Polyacetylene 

PBO     Polybenzobisoxazole 

P3AT     poly(3alkylthiophene)  

P3HT    poly(3-hexylthiophene) 

PC61BM    [6,6]-Phenyl-C61-butyric acid methyl ester  

PC71BM    [6,6]-Phenyl-C71-butyric acid methyl ester  

PCE     Power Conversion Efficiency  

PDI     Poly Dispersity Index 

PEDOT:PSS    Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) 

PITN     Polyisothianapthene  

PPA     Polyphosphoric Acid  

PPP     Poly(para-phenylenevinylene)  

PPV     Poly(phenylenevinylene) 

PT     Pyridalthiadiazole 

PV     Photovoltaic  

PVC     Photovoltaic Cell  

SCLC     Space-Charge-Limited Current  
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Acronym    Description  

SI     Supplemental Information 

tBBO     benzo[1,2-d;4,5-d']bisoxazole  

tBBZT    benzo[1,2-d;4,5-d']bisthiazole 

Td     Thermal Decomposition Temperature  

Tg     Glass Transition Temperature 

TDPP     3,6-di(2-thienyl)-1,4-diketopyrrolo[3,4-c]pyrrole  

TFA     Trifluoroacetic acid  

THF     Tetrahydrofuran  

TGA     Thermal Gravimetric Analysis 

TMS     Trimethylsilyl  

TP     thiazolo[5,4-c]pyridine  

TW     Terawatts 

UPS    Ultraviolet Photoelectron Spectroscopy 

Voc     Open Circuit Voltage  

Wt%     Weight Percent  

XRD     X-Ray Diffraction 
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